JhonMR commited on
Commit
594d485
·
verified ·
1 Parent(s): 1919264

End of training

Browse files
Files changed (7) hide show
  1. README.md +44 -179
  2. all_results.json +21 -0
  3. config.json +1 -1
  4. eval_results.json +11 -0
  5. train_results.json +8 -0
  6. trainer_state.json +280 -0
  7. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,64 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ base_model: dccuchile/bert-base-spanish-wwm-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: Bert_v11
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
 
19
+ # Bert_v11
20
 
21
+ This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Accuracy: 0.9032
24
+ - F1: 0.9018
25
+ - Precision: 0.9036
26
+ - Recall: 0.9021
27
+ - Loss: 0.4583
28
 
29
+ ## Model description
30
 
31
+ More information needed
32
 
33
+ ## Intended uses & limitations
34
 
35
+ More information needed
36
 
37
+ ## Training and evaluation data
38
 
39
+ More information needed
 
 
 
 
 
 
40
 
41
+ ## Training procedure
42
 
43
+ ### Training hyperparameters
44
 
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 200
53
+ - num_epochs: 15
54
 
55
+ ### Training results
56
 
 
57
 
 
58
 
59
+ ### Framework versions
60
 
61
+ - Transformers 4.44.2
62
+ - Pytorch 2.5.0+cu121
63
+ - Datasets 3.1.0
64
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 8.0,
3
+ "eval_accuracy": 0.9031746031746032,
4
+ "eval_f1": 0.9017850721426728,
5
+ "eval_loss": 0.45825621485710144,
6
+ "eval_precision": 0.9036277073612298,
7
+ "eval_recall": 0.902066631184587,
8
+ "eval_runtime": 125.1164,
9
+ "eval_samples_per_second": 30.212,
10
+ "eval_steps_per_second": 0.951,
11
+ "total_flos": 1.85717836136448e+16,
12
+ "train_eval_accuracy": 0.977437641723356,
13
+ "train_eval_f1": 0.9777628423711627,
14
+ "train_eval_loss": 0.08053447306156158,
15
+ "train_eval_precision": 0.9778969889316966,
16
+ "train_eval_recall": 0.9778987153746018,
17
+ "train_loss": 0.5860137939453125,
18
+ "train_runtime": 10564.8969,
19
+ "train_samples_per_second": 12.523,
20
+ "train_steps_per_second": 0.392
21
+ }
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "Bert_v11",
3
  "architectures": [
4
  "BertForSequenceClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "dccuchile/bert-base-spanish-wwm-uncased",
3
  "architectures": [
4
  "BertForSequenceClassification"
5
  ],
eval_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 8.0,
3
+ "eval_accuracy": 0.9031746031746032,
4
+ "eval_f1": 0.9017850721426728,
5
+ "eval_loss": 0.45825621485710144,
6
+ "eval_precision": 0.9036277073612298,
7
+ "eval_recall": 0.902066631184587,
8
+ "eval_runtime": 125.1164,
9
+ "eval_samples_per_second": 30.212,
10
+ "eval_steps_per_second": 0.951
11
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 8.0,
3
+ "total_flos": 1.85717836136448e+16,
4
+ "train_loss": 0.5860137939453125,
5
+ "train_runtime": 10564.8969,
6
+ "train_samples_per_second": 12.523,
7
+ "train_steps_per_second": 0.392
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2208,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "step": 276,
14
+ "train_eval_accuracy": 0.7003401360544218,
15
+ "train_eval_f1": 0.6599009769808177,
16
+ "train_eval_loss": 1.0742188692092896,
17
+ "train_eval_precision": 0.7685367987097715,
18
+ "train_eval_recall": 0.7009459009381873,
19
+ "train_loss": 1.074218988418579,
20
+ "train_runtime": 292.4292,
21
+ "train_samples_per_second": 30.161,
22
+ "train_steps_per_second": 0.944
23
+ },
24
+ {
25
+ "epoch": 1.0,
26
+ "eval_accuracy": 0.6865079365079365,
27
+ "eval_f1": 0.6448401353068663,
28
+ "eval_loss": 1.1159266233444214,
29
+ "eval_precision": 0.7389370546469851,
30
+ "eval_recall": 0.685088186510769,
31
+ "eval_runtime": 125.2302,
32
+ "eval_samples_per_second": 30.184,
33
+ "eval_steps_per_second": 0.95,
34
+ "step": 276
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "step": 552,
39
+ "train_eval_accuracy": 0.9049886621315193,
40
+ "train_eval_f1": 0.9047389370162652,
41
+ "train_eval_loss": 0.3874468207359314,
42
+ "train_eval_precision": 0.9101320070777226,
43
+ "train_eval_recall": 0.9053131019265812,
44
+ "train_loss": 0.3874468505382538,
45
+ "train_runtime": 292.6477,
46
+ "train_samples_per_second": 30.139,
47
+ "train_steps_per_second": 0.943
48
+ },
49
+ {
50
+ "epoch": 2.0,
51
+ "eval_accuracy": 0.873015873015873,
52
+ "eval_f1": 0.8716046163578155,
53
+ "eval_loss": 0.4920203685760498,
54
+ "eval_precision": 0.8781278884267814,
55
+ "eval_recall": 0.8725450168508944,
56
+ "eval_runtime": 125.7044,
57
+ "eval_samples_per_second": 30.071,
58
+ "eval_steps_per_second": 0.947,
59
+ "step": 552
60
+ },
61
+ {
62
+ "epoch": 3.0,
63
+ "step": 828,
64
+ "train_eval_accuracy": 0.9286848072562358,
65
+ "train_eval_f1": 0.9285171455529603,
66
+ "train_eval_loss": 0.27065399289131165,
67
+ "train_eval_precision": 0.9322649415650033,
68
+ "train_eval_recall": 0.9289123109383434,
69
+ "train_loss": 0.27065402269363403,
70
+ "train_runtime": 292.5422,
71
+ "train_samples_per_second": 30.149,
72
+ "train_steps_per_second": 0.943
73
+ },
74
+ {
75
+ "epoch": 3.0,
76
+ "eval_accuracy": 0.8973544973544973,
77
+ "eval_f1": 0.8961220197070991,
78
+ "eval_loss": 0.42477917671203613,
79
+ "eval_precision": 0.9011567773926408,
80
+ "eval_recall": 0.8971253090647534,
81
+ "eval_runtime": 125.1591,
82
+ "eval_samples_per_second": 30.202,
83
+ "eval_steps_per_second": 0.951,
84
+ "step": 828
85
+ },
86
+ {
87
+ "epoch": 4.0,
88
+ "step": 1104,
89
+ "train_eval_accuracy": 0.9471655328798186,
90
+ "train_eval_f1": 0.947517595979444,
91
+ "train_eval_loss": 0.2088230848312378,
92
+ "train_eval_precision": 0.9488916851742717,
93
+ "train_eval_recall": 0.9477037054061244,
94
+ "train_loss": 0.2088230848312378,
95
+ "train_runtime": 292.1312,
96
+ "train_samples_per_second": 30.192,
97
+ "train_steps_per_second": 0.945
98
+ },
99
+ {
100
+ "epoch": 4.0,
101
+ "eval_accuracy": 0.9010582010582011,
102
+ "eval_f1": 0.8999224906052751,
103
+ "eval_loss": 0.41053256392478943,
104
+ "eval_precision": 0.9025635496532717,
105
+ "eval_recall": 0.9002552887231217,
106
+ "eval_runtime": 125.1369,
107
+ "eval_samples_per_second": 30.207,
108
+ "eval_steps_per_second": 0.951,
109
+ "step": 1104
110
+ },
111
+ {
112
+ "epoch": 5.0,
113
+ "step": 1380,
114
+ "train_eval_accuracy": 0.9515873015873015,
115
+ "train_eval_f1": 0.9516673939530801,
116
+ "train_eval_loss": 0.17656771838665009,
117
+ "train_eval_precision": 0.9539169437133798,
118
+ "train_eval_recall": 0.9520537526614696,
119
+ "train_loss": 0.1765676885843277,
120
+ "train_runtime": 292.8194,
121
+ "train_samples_per_second": 30.121,
122
+ "train_steps_per_second": 0.943
123
+ },
124
+ {
125
+ "epoch": 5.0,
126
+ "eval_accuracy": 0.9063492063492063,
127
+ "eval_f1": 0.9046138481463505,
128
+ "eval_loss": 0.41682690382003784,
129
+ "eval_precision": 0.9088264652953383,
130
+ "eval_recall": 0.9051041885149284,
131
+ "eval_runtime": 125.6464,
132
+ "eval_samples_per_second": 30.084,
133
+ "eval_steps_per_second": 0.947,
134
+ "step": 1380
135
+ },
136
+ {
137
+ "epoch": 6.0,
138
+ "step": 1656,
139
+ "train_eval_accuracy": 0.9654195011337868,
140
+ "train_eval_f1": 0.9656476663607069,
141
+ "train_eval_loss": 0.12671761214733124,
142
+ "train_eval_precision": 0.9666620904833755,
143
+ "train_eval_recall": 0.9657485060432522,
144
+ "train_loss": 0.12671762704849243,
145
+ "train_runtime": 292.8539,
146
+ "train_samples_per_second": 30.117,
147
+ "train_steps_per_second": 0.942
148
+ },
149
+ {
150
+ "epoch": 6.0,
151
+ "eval_accuracy": 0.9084656084656084,
152
+ "eval_f1": 0.9069212907450369,
153
+ "eval_loss": 0.41428086161613464,
154
+ "eval_precision": 0.909310676401177,
155
+ "eval_recall": 0.9074800568136571,
156
+ "eval_runtime": 125.6663,
157
+ "eval_samples_per_second": 30.08,
158
+ "eval_steps_per_second": 0.947,
159
+ "step": 1656
160
+ },
161
+ {
162
+ "epoch": 7.0,
163
+ "step": 1932,
164
+ "train_eval_accuracy": 0.9712018140589569,
165
+ "train_eval_f1": 0.9713117879463059,
166
+ "train_eval_loss": 0.10472333431243896,
167
+ "train_eval_precision": 0.9726857205787973,
168
+ "train_eval_recall": 0.9716513762432712,
169
+ "train_loss": 0.10472334921360016,
170
+ "train_runtime": 293.0912,
171
+ "train_samples_per_second": 30.093,
172
+ "train_steps_per_second": 0.942
173
+ },
174
+ {
175
+ "epoch": 7.0,
176
+ "eval_accuracy": 0.9058201058201059,
177
+ "eval_f1": 0.9040971215004513,
178
+ "eval_loss": 0.4402031898498535,
179
+ "eval_precision": 0.9063334381728124,
180
+ "eval_recall": 0.9047346717153943,
181
+ "eval_runtime": 125.6961,
182
+ "eval_samples_per_second": 30.073,
183
+ "eval_steps_per_second": 0.947,
184
+ "step": 1932
185
+ },
186
+ {
187
+ "epoch": 8.0,
188
+ "step": 2208,
189
+ "train_eval_accuracy": 0.977437641723356,
190
+ "train_eval_f1": 0.9777628423711627,
191
+ "train_eval_loss": 0.08053447306156158,
192
+ "train_eval_precision": 0.9778969889316966,
193
+ "train_eval_recall": 0.9778987153746018,
194
+ "train_loss": 0.08053448051214218,
195
+ "train_runtime": 293.5192,
196
+ "train_samples_per_second": 30.049,
197
+ "train_steps_per_second": 0.94
198
+ },
199
+ {
200
+ "epoch": 8.0,
201
+ "eval_accuracy": 0.9031746031746032,
202
+ "eval_f1": 0.9017850721426728,
203
+ "eval_loss": 0.45825621485710144,
204
+ "eval_precision": 0.9036277073612298,
205
+ "eval_recall": 0.902066631184587,
206
+ "eval_runtime": 125.7628,
207
+ "eval_samples_per_second": 30.057,
208
+ "eval_steps_per_second": 0.946,
209
+ "step": 2208
210
+ },
211
+ {
212
+ "epoch": 8.0,
213
+ "step": 2208,
214
+ "total_flos": 1.85717836136448e+16,
215
+ "train_loss": 0.5860137939453125,
216
+ "train_runtime": 10564.8969,
217
+ "train_samples_per_second": 12.523,
218
+ "train_steps_per_second": 0.392
219
+ },
220
+ {
221
+ "epoch": 8.0,
222
+ "eval_accuracy": 0.9031746031746032,
223
+ "eval_f1": 0.9017850721426728,
224
+ "eval_loss": 0.45825621485710144,
225
+ "eval_precision": 0.9036277073612298,
226
+ "eval_recall": 0.902066631184587,
227
+ "eval_runtime": 125.8523,
228
+ "eval_samples_per_second": 30.035,
229
+ "eval_steps_per_second": 0.946,
230
+ "step": 2208
231
+ },
232
+ {
233
+ "epoch": 8.0,
234
+ "step": 2208,
235
+ "train_en_eval_accuracy": 0.977437641723356,
236
+ "train_en_eval_f1": 0.9777628423711627,
237
+ "train_en_eval_loss": 0.08053447306156158,
238
+ "train_en_eval_precision": 0.9778969889316966,
239
+ "train_en_eval_recall": 0.9778987153746018,
240
+ "train_en_loss": 0.08053448051214218,
241
+ "train_en_runtime": 292.6514,
242
+ "train_en_samples_per_second": 30.138,
243
+ "train_en_steps_per_second": 0.943
244
+ },
245
+ {
246
+ "epoch": 8.0,
247
+ "step": 2208,
248
+ "test_en_eval_accuracy": 0.9031746031746032,
249
+ "test_en_eval_f1": 0.9017850721426728,
250
+ "test_en_eval_loss": 0.45825621485710144,
251
+ "test_en_eval_precision": 0.9036277073612298,
252
+ "test_en_eval_recall": 0.902066631184587,
253
+ "test_en_loss": 0.45825621485710144,
254
+ "test_en_runtime": 125.7293,
255
+ "test_en_samples_per_second": 30.065,
256
+ "test_en_steps_per_second": 0.946
257
+ }
258
+ ],
259
+ "logging_steps": 500,
260
+ "max_steps": 4140,
261
+ "num_input_tokens_seen": 0,
262
+ "num_train_epochs": 15,
263
+ "save_steps": 500,
264
+ "stateful_callbacks": {
265
+ "TrainerControl": {
266
+ "args": {
267
+ "should_epoch_stop": false,
268
+ "should_evaluate": false,
269
+ "should_log": false,
270
+ "should_save": true,
271
+ "should_training_stop": true
272
+ },
273
+ "attributes": {}
274
+ }
275
+ },
276
+ "total_flos": 1.85717836136448e+16,
277
+ "train_batch_size": 32,
278
+ "trial_name": null,
279
+ "trial_params": null
280
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61f593d5ee3af57a6aa7a4af08474e2f8ef51b748a49eed3a6e655563c0e80c8
3
+ size 5112