from tensorflow.keras.models import Sequential import tensorflow.keras.layers as tfl def cat_dog_model(image_size, image_channel): model = Sequential([ # Block 1 tfl.Conv2D(32, (3, 3), activation='relu', input_shape=(image_size, image_size, image_channel)), tfl.BatchNormalization(), tfl.MaxPooling2D(pool_size=(2, 2)), tfl.Dropout(0.2), # Block 2 tfl.Conv2D(64, (3, 3), activation='relu'), tfl.BatchNormalization(), tfl.MaxPooling2D(pool_size=(2, 2)), tfl.Dropout(0.2), # Block 3 tfl.Conv2D(128, (3, 3), activation='relu'), tfl.BatchNormalization(), tfl.MaxPooling2D(pool_size=(2, 2)), tfl.Dropout(0.2), # Block 4 tfl.Conv2D(256, (3, 3), activation='relu'), tfl.BatchNormalization(), tfl.MaxPooling2D(pool_size=(2, 2)), tfl.Dropout(0.2), # Fully Connected Layers tfl.Flatten(), tfl.Dense(512, activation='relu'), tfl.BatchNormalization(), tfl.Dropout(0.2), # Output Layer (Softmax for multi-class classification) tfl.Dense(1, activation='sigmoid') ]) return model