# ############################################################################ # Model: WAV2VEC XLSR model for Accent Recognition (Italian) # see paper: https://arxiv.org/abs/2305.18283 # ############################################################################ # Hparams NEEDED HPARAMS_NEEDED: ["encoder_dim", "out_n_neurons", "label_encoder", "softmax"] # Modules Needed MODULES_NEEDED: ["wav2vec2", "avg_pool", "output_mlp"] # Feature parameters # wav2vec2_hub: facebook/wav2vec2-base wav2vec2_hub: "facebook/wav2vec2-large-xlsr-53" # Pretrain folder (HuggingFace) pretrained_path: Jzuluaga/accent-id-commonaccent_xlsr-it-italian # URL for the biggest Fairseq english wav2vec2 model. # parameters encoder_dim: 1024 out_n_neurons: 6 wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2 source: !ref output_norm: True freeze: True save_path: wav2vec2_checkpoints # Mean and std normalization of the input features mean_var_norm_emb: !new:speechbrain.processing.features.InputNormalization norm_type: sentence std_norm: False avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling return_std: False output_mlp: !new:speechbrain.nnet.linear.Linear input_size: !ref n_neurons: !ref bias: False model: !new:torch.nn.ModuleList - [!ref ] modules: mean_var_norm_emb: !ref wav2vec2: !ref output_mlp: !ref avg_pool: !ref softmax: !new:speechbrain.nnet.activations.Softmax label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer loadables: mean_var_norm_emb: !ref wav2vec2: !ref model: !ref label_encoder: !ref paths: mean_var_norm_emb: !ref /normalizer_input.ckpt wav2vec2: !ref /wav2vec2.ckpt model: !ref /model.ckpt label_encoder: !ref /label_encoder.txt