|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
class UNet(nn.Module): |
|
def __init__(self): |
|
super(UNet, self).__init__() |
|
|
|
self.encoder = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.decoder = nn.Sequential( |
|
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), |
|
nn.Tanh() |
|
) |
|
|
|
def forward(self, x): |
|
enc = self.encoder(x) |
|
dec = self.decoder(enc) |
|
return dec |