--- tags: - unet - pix2pix - pytorch library_name: pytorch --- # Pix2Pix UNet Model ## Model Description Custom UNet model for Pix2Pix image translation. - **Image Size:** 1024 - **Model Type:** Big (1024) ## Usage ```python import torch from small_256_model import UNet as small_UNet from big_1024_model import UNet as big_UNet # Load the model checkpoint = torch.load('model_weights.pth') model = big_UNet() if checkpoint['model_config']['big'] else small_UNet() model.load_state_dict(checkpoint['model_state_dict']) model.eval() Model Architecture UNet( (encoder): Sequential( (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (3): ReLU(inplace=True) (4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (5): ReLU(inplace=True) (6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (7): ReLU(inplace=True) (8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (9): ReLU(inplace=True) ) (decoder): Sequential( (0): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): ReLU(inplace=True) (2): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (3): ReLU(inplace=True) (4): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (5): ReLU(inplace=True) (6): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (7): ReLU(inplace=True) (8): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (9): Tanh() ) )