import torch import torch.nn as nn import torch.optim as optim class UNet(nn.Module): def __init__(self): super(UNet, self).__init__() # Encoder self.encoder = nn.Sequential( nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.ReLU(inplace=True), ) # Decoder self.decoder = nn.Sequential( nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), nn.Tanh() ) def forward(self, x): enc = self.encoder(x) dec = self.decoder(enc) return dec