from typing import Dict from pyannote.audio import Pipeline from transformers.pipelines.audio_utils import ffmpeg_read import torch import base64 import numpy as np SAMPLE_RATE = 16000 class EndpointHandler(): def __init__(self, path=""): # load the model self.pipeline = Pipeline.from_pretrained("philschmid/pyannote-speaker-diarization-endpoint") def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]: """ Args: data (:obj:): includes the deserialized audio file as bytes Return: A :obj:`dict`:. base64 encoded image """ # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # min_speakers=2, max_speakers=5 # decode the base64 audio data audio_data = base64.b64decode(inputs) audio_nparray = np.frombuffer(audio_data, dtype=np.int16) # prepare pynannote input audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0) pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE} # apply pretrained pipeline # pass inputs with all kwargs in data if parameters is not None: diarization = self.pipeline(pyannote_input, **parameters) else: diarization = self.pipeline(pyannote_input) # postprocess the prediction processed_diarization = [ {"label": str(label), "start": str(segment.start), "stop": str(segment.end)} for segment, _, label in diarization.itertracks(yield_label=True) ] return {"diarization": processed_diarization}