File size: 3,727 Bytes
c471d05 82df3a7 c471d05 82df3a7 c471d05 82df3a7 c471d05 82df3a7 c471d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1117
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9403
- Rouge1: 0.1117
- Rouge2: 0.0199
- Rougel: 0.0955
- Rougelsum: 0.0951
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 10 | 4.4002 | 0.1333 | 0.0378 | 0.1094 | 0.109 | 19.0 |
| No log | 2.0 | 20 | 3.8225 | 0.1325 | 0.0351 | 0.1085 | 0.1081 | 19.0 |
| No log | 3.0 | 30 | 3.5343 | 0.1343 | 0.0361 | 0.1109 | 0.1109 | 19.0 |
| No log | 4.0 | 40 | 3.3920 | 0.1253 | 0.0307 | 0.1069 | 0.1067 | 19.0 |
| No log | 5.0 | 50 | 3.2849 | 0.1239 | 0.0275 | 0.1028 | 0.103 | 19.0 |
| No log | 6.0 | 60 | 3.2041 | 0.1227 | 0.0237 | 0.1015 | 0.1016 | 19.0 |
| No log | 7.0 | 70 | 3.1439 | 0.1234 | 0.0218 | 0.1022 | 0.1023 | 19.0 |
| No log | 8.0 | 80 | 3.0979 | 0.1286 | 0.026 | 0.1057 | 0.106 | 19.0 |
| No log | 9.0 | 90 | 3.0624 | 0.1298 | 0.0289 | 0.1048 | 0.105 | 19.0 |
| No log | 10.0 | 100 | 3.0351 | 0.1286 | 0.0299 | 0.105 | 0.1053 | 19.0 |
| No log | 11.0 | 110 | 3.0135 | 0.1292 | 0.0288 | 0.1066 | 0.1068 | 19.0 |
| No log | 12.0 | 120 | 2.9956 | 0.1148 | 0.0195 | 0.0942 | 0.0938 | 19.0 |
| No log | 13.0 | 130 | 2.9813 | 0.1167 | 0.0195 | 0.0943 | 0.0939 | 19.0 |
| No log | 14.0 | 140 | 2.9697 | 0.1129 | 0.0204 | 0.0935 | 0.093 | 19.0 |
| No log | 15.0 | 150 | 2.9606 | 0.1129 | 0.0204 | 0.0935 | 0.093 | 19.0 |
| No log | 16.0 | 160 | 2.9534 | 0.1125 | 0.0198 | 0.0934 | 0.0931 | 19.0 |
| No log | 17.0 | 170 | 2.9478 | 0.1117 | 0.0199 | 0.0955 | 0.0951 | 19.0 |
| No log | 18.0 | 180 | 2.9436 | 0.1117 | 0.0199 | 0.0955 | 0.0951 | 19.0 |
| No log | 19.0 | 190 | 2.9411 | 0.1117 | 0.0199 | 0.0955 | 0.0951 | 19.0 |
| No log | 20.0 | 200 | 2.9403 | 0.1117 | 0.0199 | 0.0955 | 0.0951 | 19.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231123
- Datasets 2.15.0
- Tokenizers 0.15.0
|