--- base_model: klue/roberta-base datasets: [] language: [] library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:574408 - loss:MultipleNegativesRankingLoss - loss:CosineSimilarityLoss widget: - source_sentence: 한 여성이 뜨거운 물 냄비에 음식을 넣고 있다. sentences: - 한 여성이 고기를 튀기고 있다. - '세계 브리핑 아시아 : 미얀마 : 치명적인 반 무슬림 폭력 사태가 폭발했다.' - 아기가 잠들고 있다. - source_sentence: 러시아 비행기 추락 사고로 사망자 수 증가 sentences: - 이탈리아 코치 추락으로 사망자 수가 39명으로 증가 - 헬리콥터 펍 추락 후 사망 두려워하는 세 명 - 흑백 개는 입에 갈색 물체를 물고 헤엄친다. - source_sentence: 거울에 비친 한 여자가 옆에 있는 다른 여자와 함께 카메라를 외면하고 앉아 있었다. sentences: - 보도 위를 걷는 여자와 함께 길을 건너는 흑인 여성의 뒷모습. - 여자가 거울을 응시하고 있다 - 한 여성이 햄버거를 응시하고 있다 - source_sentence: 스키를 탄 사람이 공중으로 뛰어오른다. sentences: - 밖에 한 남자가 있다. - 그는 눈 위를 달리고 있다. - 그는 스키를 타고 공중으로 뛰어올랐다. - source_sentence: 내 옆이나 내 뒤에, 경외심을 느끼며 언더톤으로 말했다. sentences: - 그는 나와는 거리가 멀었다. - FSIS는 접수된 의견과 기관의 요구 사항 재평가를 고려하여 연간 부담을 8,053,319시간으로 줄였습니다. - 그는 나와 가까웠다. model-index: - name: SentenceTransformer based on klue/roberta-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8657393669442817 name: Pearson Cosine - type: spearman_cosine value: 0.866343037897214 name: Spearman Cosine - type: pearson_manhattan value: 0.8568809906017532 name: Pearson Manhattan - type: spearman_manhattan value: 0.8621129068016818 name: Spearman Manhattan - type: pearson_euclidean value: 0.8569880055215549 name: Pearson Euclidean - type: spearman_euclidean value: 0.8620159980137003 name: Spearman Euclidean - type: pearson_dot value: 0.8382433069709427 name: Pearson Dot - type: spearman_dot value: 0.8359003576467027 name: Spearman Dot - type: pearson_max value: 0.8657393669442817 name: Pearson Max - type: spearman_max value: 0.866343037897214 name: Spearman Max --- # SentenceTransformer based on klue/roberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '내 옆이나 내 뒤에, 경외심을 느끼며 언더톤으로 말했다.', '그는 나와 가까웠다.', '그는 나와는 거리가 멀었다.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.8657 | | spearman_cosine | 0.8663 | | pearson_manhattan | 0.8569 | | spearman_manhattan | 0.8621 | | pearson_euclidean | 0.857 | | spearman_euclidean | 0.862 | | pearson_dot | 0.8382 | | spearman_dot | 0.8359 | | pearson_max | 0.8657 | | **spearman_max** | **0.8663** | ## Training Details ### Training Datasets #### Unnamed Dataset * Size: 568,640 training samples * Columns: sentence_0, sentence_1, and sentence_2 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:----------------------------------------|:-------------------------------------------------|:--------------------------------------| | 발생 부하가 함께 5% 적습니다. | 발생 부하의 5% 감소와 함께 11. | 발생 부하가 5% 증가합니다. | | 어떤 행사를 위해 음식과 옷을 배급하는 여성들. | 여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다. | 여자들이 사막에서 오토바이를 운전하고 있다. | | 어린 아이들은 그 지식을 얻을 필요가 있다. | 응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아. | 젊은 사람들은 배울 필요가 없다. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` #### Unnamed Dataset * Size: 5,768 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------| | 식품의약품관리국은 셔디 리서치를 인용하여 2001년 IMClone의 에르비턱스 판매 신청을 거절했다. | 미국 식품의약국은 2001년 12월 이 재판이 부실하게 진행되었다고 말하면서 이클론의 원래 신청을 거부했다. | 0.5599999999999999 | | 이슬람 주도의 이집트 , 콥트 교회 이름은 새로운 교황이다 | 이집트 기독교인들은 새로운 교황을 선택한다 | 0.64 | | 시리아 주지사는 공격을 중단하지 않는다 | 시리아 야당, '학살' 보고 | 0.2 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `num_train_epochs`: 5 - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | sts-dev_spearman_max | |:------:|:----:|:-------------:|:--------------------:| | 0.3467 | 500 | 0.419 | - | | 0.6935 | 1000 | 0.3032 | 0.8516 | | 1.0007 | 1443 | - | 0.8605 | | 1.0395 | 1500 | 0.2705 | - | | 1.3863 | 2000 | 0.1368 | 0.8509 | | 1.7330 | 2500 | 0.0906 | - | | 2.0007 | 2886 | - | 0.8663 | ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.2.2+cu121 - Accelerate: 0.31.0 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```