KaQyn commited on
Commit
03ea7f7
1 Parent(s): 8e6d58b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - generated_from_trainer
5
+ base_model: codellama/CodeLlama-13b-Instruct-hf
6
+ model-index:
7
+ - name: peft-lora-CodeLlama-13b-web-copilot
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # peft-lora-CodeLlama-13b-web-copilot
15
+
16
+ This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5057
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0003
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 4
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 16
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 2000
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:----:|:---------------:|
52
+ | 0.6412 | 0.05 | 100 | 0.7106 |
53
+ | 0.6793 | 0.1 | 200 | 0.6769 |
54
+ | 0.5832 | 0.15 | 300 | 0.6106 |
55
+ | 0.4985 | 0.2 | 400 | 0.5781 |
56
+ | 0.4751 | 0.25 | 500 | 0.5553 |
57
+ | 0.3364 | 0.3 | 600 | 0.5514 |
58
+ | 0.5155 | 0.35 | 700 | 0.5374 |
59
+ | 0.302 | 0.4 | 800 | 0.5297 |
60
+ | 0.8282 | 0.45 | 900 | 0.5221 |
61
+ | 0.4002 | 0.5 | 1000 | 0.5145 |
62
+ | 0.3956 | 0.55 | 1100 | 0.5091 |
63
+ | 0.2477 | 0.6 | 1200 | 0.5085 |
64
+ | 0.3478 | 0.65 | 1300 | 0.5042 |
65
+ | 0.2842 | 0.7 | 1400 | 0.5040 |
66
+ | 0.7054 | 0.75 | 1500 | 0.5044 |
67
+ | 0.2784 | 0.8 | 1600 | 0.5046 |
68
+ | 0.3101 | 0.85 | 1700 | 0.5047 |
69
+ | 0.2627 | 0.9 | 1800 | 0.5048 |
70
+ | 0.3749 | 0.95 | 1900 | 0.5057 |
71
+ | 0.1992 | 1.0 | 2000 | 0.5057 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.10.1.dev0
77
+ - Transformers 4.40.0.dev0
78
+ - Pytorch 2.2.1+cu121
79
+ - Datasets 2.18.0
80
+ - Tokenizers 0.15.2