Kabatubare
commited on
Commit
•
0f1cdda
1
Parent(s):
df9bb31
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Yo!Medical3000
|
3 |
+
tags:
|
4 |
+
- healthcare
|
5 |
+
- NLP
|
6 |
+
- dialogues
|
7 |
+
- LLM
|
8 |
+
- fine-tuned
|
9 |
+
license: unknown
|
10 |
+
datasets:
|
11 |
+
- Kabatubare/medical-guanaco-3000
|
12 |
+
---
|
13 |
+
|
14 |
+
# Yo!Medical3000 Model Card
|
15 |
+
|
16 |
+
This is a model card for Yo!Medical3000, a fine-tuned version of TinyPixel/Llama-2-7B-bf16-sharded, specifically aimed at medical dialogues.
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
### Base Model
|
21 |
+
|
22 |
+
- **Name**: TinyPixel/Llama-2-7B-bf16-sharded
|
23 |
+
- **Description**: (A brief description of the base model, its architecture, and its intended use-cases)
|
24 |
+
|
25 |
+
### Fine-tuned Model
|
26 |
+
|
27 |
+
- **Name**: Yo!Medical3000
|
28 |
+
- **Fine-tuned on**: Kabatubare/medical-guanaco-3000
|
29 |
+
- **Description**: This model is fine-tuned to specialize in medical dialogues and healthcare applications.
|
30 |
+
|
31 |
+
### Architecture and Training Parameters
|
32 |
+
|
33 |
+
#### Architecture
|
34 |
+
|
35 |
+
- **LoRA Attention Dimension**: 64
|
36 |
+
- **LoRA Alpha Parameter**: 16
|
37 |
+
- **LoRA Dropout**: 0.1
|
38 |
+
- **Precision**: 4-bit (bitsandbytes)
|
39 |
+
- **Quantization Type**: nf4
|
40 |
+
|
41 |
+
#### Training Parameters
|
42 |
+
|
43 |
+
- **Epochs**: 3
|
44 |
+
- **Batch Size**: 4
|
45 |
+
- **Gradient Accumulation Steps**: 1
|
46 |
+
- **Max Gradient Norm**: 0.3
|
47 |
+
- **Learning Rate**: 3e-4
|
48 |
+
- **Weight Decay**: 0.001
|
49 |
+
- **Optimizer**: paged_adamw_32bit
|
50 |
+
- **LR Scheduler**: cosine
|
51 |
+
- **Warmup Ratio**: 0.03
|
52 |
+
- **Logging Steps**: 25
|
53 |
+
|
54 |
+
## Datasets
|
55 |
+
|
56 |
+
### Base Model Dataset
|
57 |
+
|
58 |
+
- **Name**: (Name of the dataset used for the base model)
|
59 |
+
- **Description**: (A brief description of this dataset and its characteristics)
|
60 |
+
|
61 |
+
### Fine-tuning Dataset
|
62 |
+
|
63 |
+
- **Name**: Kabatubare/medical-guanaco-3000
|
64 |
+
- **Description**: This is a reduced and balanced dataset curated from a larger medical dialogue dataset. It aims to cover a broad range of medical topics and is suitable for training healthcare chatbots and conducting medical NLP research.
|
65 |
+
|
66 |
+
## Usage
|
67 |
+
|
68 |
+
```python
|
69 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
70 |
+
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained("Yo!Medical3000")
|
72 |
+
model = AutoModelForCausalLM.from_pretrained("Yo!Medical3000")
|
73 |
+
|
74 |
+
# Use the model for inference
|