KarloB7 commited on
Commit
850f98c
1 Parent(s): fa85dcb

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import os
3
+ import gradio as gr
4
+ import xgboost as xgb
5
+ import pickle
6
+ from sklearn.feature_extraction.text import TfidfVectorizer
7
+
8
+
9
+ os.environ["WANDB_DISABLED"] = "true"
10
+
11
+ label2id = {
12
+ 0: "negative",
13
+ 1: "neutral",
14
+ 2: "positive"
15
+ }
16
+ # names of the files saved in step 2: Training
17
+
18
+ model_file_name = "model.pkl"
19
+ vectorizer_file_name = 'vectorizer.pk'
20
+
21
+
22
+ # load
23
+ xgb_model_loaded = pickle.load(open(model_file_name, "rb"))
24
+ vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb"))
25
+
26
+
27
+ def predict_sentiment(predict_texts):
28
+ predictions_loaded = xgb_model_loaded.predict(vectorizer_loaded.transform([predict_texts]))
29
+ print(predictions_loaded)
30
+ return label2id[predictions_loaded[0]]
31
+
32
+
33
+ interface = gr.Interface(
34
+ fn=predict_sentiment,
35
+ inputs='text',
36
+ outputs=['text'],
37
+ title='Croatian Book reviews Sentiment Analysis',
38
+ examples= ["Volim kavu","Ne volim kavu"],
39
+ description='Get the positive/neutral/negative sentiment for the given input.'
40
+ )
41
+
42
+ interface.launch(inline = False)