Kendamarron commited on
Commit
63d42a4
1 Parent(s): 222fdc8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -4
README.md CHANGED
@@ -11,16 +11,66 @@ model-index:
11
  results: []
12
  language:
13
  - ja
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
- # sft
20
 
21
- This model is a fine-tuned version of [llm-jp/llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct) on the cot_normal and the cot_math datasets.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.5311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Model description
26
 
 
11
  results: []
12
  language:
13
  - ja
14
+ datasets:
15
+ - Kendamarron/Magpie-Tanuki-8B-CoT
16
+ - Kendamarron/OpenMathInstruct-2-ja-CoT
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
  should probably proofread and complete it, then remove this comment. -->
21
 
22
+ # Model
23
 
24
+ [llm-jp/llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct)をCoTデータでファインチューニングすることで作成したreasoningモデルです。
25
+
26
+ 学習にはQwen2.5-32B-Instruct-AWQを使って生成した合成データセットを使用しています。.
27
+
28
+ - [Kendamarron/llm-jp-3-3.7b-o1-v0.1](https://huggingface.co/datasets/Kendamarron/Magpie-Tanuki-8B-CoT)
29
+ - [Kendamarron/OpenMathInstruct-2-ja-CoT](https://huggingface.co/datasets/Kendamarron/OpenMathInstruct-2-ja-CoT)
30
+
31
+ ## Usage
32
+ ```
33
+ import torch
34
+ from transformers import AutoTokenizer, AutoModelForCausalLM
35
+
36
+ device = "cuda"
37
+
38
+ model = AutoModelForCausalLM.from_pretrained(
39
+ 'Kendamarron/llm-jp-3-3.7b-o1-v0.1',
40
+ torch_dtype=torch.bfloat16,
41
+ device_map=device,
42
+ )
43
+ tokenizer = AutoTokenizer.from_pretrained('Kendamarron/Tokara-0.5B-Chat-dolly-jimba')
44
+
45
+ messages = [
46
+ {"role": "system", "content": "あなたは優秀で論理的なアシスタントです。まずは<Thought></Thought>タグの中であなたの思考の過程を記載し、<Output></Output>タグの中に最終的にユーザーに提供する出力を記載します。"},
47
+ {"role": "user", "content": "1から10までの整数を足すと?"}
48
+ ]
49
+ text = tokenizer.apply_chat_template(
50
+ messages,
51
+ tokenize=False,
52
+ add_generation_prompt=True
53
+ )
54
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
55
+ generated_ids = model.generate(
56
+ model_inputs.input_ids,
57
+ max_new_tokens=256,
58
+ do_sample=True,
59
+ top_p=0.95,
60
+ top_k=40,
61
+ temperature=0.7,
62
+ repetition_penalty=1.1,
63
+ pad_token_id=tokenizer.eos_token_id,
64
+ eos_token_id=tokenizer.eos_token_id,
65
+ no_repeat_ngram_size=2
66
+ )
67
+ generated_ids = [
68
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
69
+ ]
70
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
71
+
72
+ print(response)
73
+ ```
74
 
75
  ## Model description
76