End of training
Browse files- README.md +12 -33
- model.safetensors +1 -1
README.md
CHANGED
@@ -8,21 +8,9 @@ tags:
|
|
8 |
- generated_from_trainer
|
9 |
datasets:
|
10 |
- tericlabs
|
11 |
-
metrics:
|
12 |
-
- wer
|
13 |
model-index:
|
14 |
- name: Whisper Small Runyankore
|
15 |
-
results:
|
16 |
-
- task:
|
17 |
-
name: Automatic Speech Recognition
|
18 |
-
type: automatic-speech-recognition
|
19 |
-
dataset:
|
20 |
-
name: Yogera data
|
21 |
-
type: tericlabs
|
22 |
-
metrics:
|
23 |
-
- name: Wer
|
24 |
-
type: wer
|
25 |
-
value: 47.48073503260225
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +20,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Yogera data dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
-
|
36 |
-
-
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,31 +49,17 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_steps: 1000
|
62 |
-
- training_steps:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
-
### Training results
|
66 |
-
|
67 |
-
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
-
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
69 |
-
| 3.7277 | 0.43 | 100 | 2.6880 | 98.2810 |
|
70 |
-
| 2.265 | 0.85 | 200 | 1.8155 | 84.8251 |
|
71 |
-
| 1.6872 | 1.28 | 300 | 1.3734 | 75.1630 |
|
72 |
-
| 1.25 | 1.7 | 400 | 0.9704 | 65.2638 |
|
73 |
-
| 0.9047 | 2.13 | 500 | 0.8496 | 57.9727 |
|
74 |
-
| 0.7852 | 2.55 | 600 | 0.7705 | 57.0836 |
|
75 |
-
| 0.7065 | 2.98 | 700 | 0.7080 | 51.4523 |
|
76 |
-
| 0.4952 | 3.4 | 800 | 0.6939 | 50.3853 |
|
77 |
-
| 0.516 | 3.83 | 900 | 0.6786 | 49.0219 |
|
78 |
-
| 0.4005 | 4.26 | 1000 | 0.6975 | 47.4807 |
|
79 |
-
|
80 |
-
|
81 |
### Framework versions
|
82 |
|
83 |
- Transformers 4.38.0.dev0
|
84 |
- Pytorch 2.1.0+cu121
|
85 |
- Datasets 2.16.1
|
86 |
-
- Tokenizers 0.15.
|
|
|
8 |
- generated_from_trainer
|
9 |
datasets:
|
10 |
- tericlabs
|
|
|
|
|
11 |
model-index:
|
12 |
- name: Whisper Small Runyankore
|
13 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Yogera data dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- eval_loss: 0.9862
|
24 |
+
- eval_wer: 44.6947
|
25 |
+
- eval_runtime: 52.8005
|
26 |
+
- eval_samples_per_second: 4.261
|
27 |
+
- eval_steps_per_second: 0.549
|
28 |
+
- epoch: 42.55
|
29 |
+
- step: 5000
|
30 |
|
31 |
## Model description
|
32 |
|
|
|
49 |
- train_batch_size: 16
|
50 |
- eval_batch_size: 8
|
51 |
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 32
|
54 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
- lr_scheduler_warmup_steps: 1000
|
57 |
+
- training_steps: 10000
|
58 |
- mixed_precision_training: Native AMP
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
### Framework versions
|
61 |
|
62 |
- Transformers 4.38.0.dev0
|
63 |
- Pytorch 2.1.0+cu121
|
64 |
- Datasets 2.16.1
|
65 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 966995080
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f789e972564f9dabc1ecb59272aed459e5812c3bda3454866bcce5d36bfdb8d
|
3 |
size 966995080
|