--- language: - nyn license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - tericlabs metrics: - wer model-index: - name: Whisper Small Runyankore results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Yogera data type: tericlabs metrics: - name: Wer type: wer value: 47.48073503260225 --- # Whisper Small Runyankore This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Yogera data dataset. It achieves the following results on the evaluation set: - Loss: 0.6975 - Wer: 47.4807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 3.7277 | 0.43 | 100 | 2.6880 | 98.2810 | | 2.265 | 0.85 | 200 | 1.8155 | 84.8251 | | 1.6872 | 1.28 | 300 | 1.3734 | 75.1630 | | 1.25 | 1.7 | 400 | 0.9704 | 65.2638 | | 0.9047 | 2.13 | 500 | 0.8496 | 57.9727 | | 0.7852 | 2.55 | 600 | 0.7705 | 57.0836 | | 0.7065 | 2.98 | 700 | 0.7080 | 51.4523 | | 0.4952 | 3.4 | 800 | 0.6939 | 50.3853 | | 0.516 | 3.83 | 900 | 0.6786 | 49.0219 | | 0.4005 | 4.26 | 1000 | 0.6975 | 47.4807 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0