KoichiYasuoka commited on
Commit
c60ae79
1 Parent(s): d95fa2a

initial release

Browse files
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "vi"
4
+ tags:
5
+ - "vietnamese"
6
+ - "token-classification"
7
+ - "pos"
8
+ - "dependency-parsing"
9
+ datasets:
10
+ - "universal_dependencies"
11
+ license: "cc-by-sa-4.0"
12
+ pipeline_tag: "token-classification"
13
+ widget:
14
+ - text: "Hai cái đầu thì tốt hơn một."
15
+ ---
16
+
17
+ # bert-base-vietnamese-upos
18
+
19
+ ## Model Description
20
+
21
+ This is a BERT model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing, derived from [vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech).
22
+
23
+ ## How to Use
24
+
25
+ ```py
26
+ from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
27
+ tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos")
28
+ model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos")
29
+ pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
30
+ nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
31
+ print(nlp("Hai cái đầu thì tốt hơn một."))
32
+ ```
33
+
34
+ or
35
+
36
+ ```py
37
+ import esupar
38
+ nlp=esupar.load("KoichiYasuoka/bert-base-vietnamese-upos")
39
+ print(nlp("Hai cái đầu thì tốt hơn một."))
40
+ ```
41
+
42
+ ## See Also
43
+
44
+ [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
config.json ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "ADJ",
13
+ "1": "ADP",
14
+ "2": "ADV",
15
+ "3": "AUX",
16
+ "4": "B-ADJ",
17
+ "5": "B-ADP",
18
+ "6": "B-ADV",
19
+ "7": "B-AUX",
20
+ "8": "B-DET",
21
+ "9": "B-INTJ",
22
+ "10": "B-NOUN",
23
+ "11": "B-NUM",
24
+ "12": "B-PART",
25
+ "13": "B-PRON",
26
+ "14": "B-PROPN",
27
+ "15": "B-PUNCT",
28
+ "16": "B-SCONJ",
29
+ "17": "B-SYM",
30
+ "18": "B-VERB",
31
+ "19": "B-X",
32
+ "20": "CCONJ",
33
+ "21": "DET",
34
+ "22": "I-ADJ",
35
+ "23": "I-ADP",
36
+ "24": "I-ADV",
37
+ "25": "I-AUX",
38
+ "26": "I-DET",
39
+ "27": "I-INTJ",
40
+ "28": "I-NOUN",
41
+ "29": "I-NUM",
42
+ "30": "I-PART",
43
+ "31": "I-PRON",
44
+ "32": "I-PROPN",
45
+ "33": "I-PUNCT",
46
+ "34": "I-SCONJ",
47
+ "35": "I-SYM",
48
+ "36": "I-VERB",
49
+ "37": "I-X",
50
+ "38": "INTJ",
51
+ "39": "NOUN",
52
+ "40": "NUM",
53
+ "41": "PART",
54
+ "42": "PRON",
55
+ "43": "PROPN",
56
+ "44": "PUNCT",
57
+ "45": "SCONJ",
58
+ "46": "SYM",
59
+ "47": "VERB",
60
+ "48": "X"
61
+ },
62
+ "initializer_range": 0.02,
63
+ "intermediate_size": 3072,
64
+ "label2id": {
65
+ "ADJ": 0,
66
+ "ADP": 1,
67
+ "ADV": 2,
68
+ "AUX": 3,
69
+ "B-ADJ": 4,
70
+ "B-ADP": 5,
71
+ "B-ADV": 6,
72
+ "B-AUX": 7,
73
+ "B-DET": 8,
74
+ "B-INTJ": 9,
75
+ "B-NOUN": 10,
76
+ "B-NUM": 11,
77
+ "B-PART": 12,
78
+ "B-PRON": 13,
79
+ "B-PROPN": 14,
80
+ "B-PUNCT": 15,
81
+ "B-SCONJ": 16,
82
+ "B-SYM": 17,
83
+ "B-VERB": 18,
84
+ "B-X": 19,
85
+ "CCONJ": 20,
86
+ "DET": 21,
87
+ "I-ADJ": 22,
88
+ "I-ADP": 23,
89
+ "I-ADV": 24,
90
+ "I-AUX": 25,
91
+ "I-DET": 26,
92
+ "I-INTJ": 27,
93
+ "I-NOUN": 28,
94
+ "I-NUM": 29,
95
+ "I-PART": 30,
96
+ "I-PRON": 31,
97
+ "I-PROPN": 32,
98
+ "I-PUNCT": 33,
99
+ "I-SCONJ": 34,
100
+ "I-SYM": 35,
101
+ "I-VERB": 36,
102
+ "I-X": 37,
103
+ "INTJ": 38,
104
+ "NOUN": 39,
105
+ "NUM": 40,
106
+ "PART": 41,
107
+ "PRON": 42,
108
+ "PROPN": 43,
109
+ "PUNCT": 44,
110
+ "SCONJ": 45,
111
+ "SYM": 46,
112
+ "VERB": 47,
113
+ "X": 48
114
+ },
115
+ "layer_norm_eps": 1e-12,
116
+ "max_position_embeddings": 512,
117
+ "model_type": "bert",
118
+ "num_attention_heads": 12,
119
+ "num_hidden_layers": 12,
120
+ "output_past": true,
121
+ "pad_token_id": 0,
122
+ "pooler_fc_size": 768,
123
+ "pooler_num_attention_heads": 12,
124
+ "pooler_num_fc_layers": 3,
125
+ "pooler_size_per_head": 128,
126
+ "pooler_type": "first_token_transform",
127
+ "position_embedding_type": "absolute",
128
+ "tokenizer_class": "BertTokenizerFast",
129
+ "torch_dtype": "float32",
130
+ "transformers_version": "4.22.1",
131
+ "type_vocab_size": 2,
132
+ "use_cache": true,
133
+ "vocab_size": 38168
134
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d39af228b8bf4fc9cc073b1c799bea7251ebb29fa791d0b6e2c1c748fb404511
3
+ size 459276273
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
supar.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85e540952e65c6a3a6f19084f41a5a5423aa0df4bc2bce5af69e795f4f580d05
3
+ size 509894565
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": false,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "never_split": null,
8
+ "pad_token": "[PAD]",
9
+ "sep_token": "[SEP]",
10
+ "special_tokens_map_file": null,
11
+ "strip_accents": false,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizerFast",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff