File size: 1,399 Bytes
12d2ae7
 
 
 
 
92b0af2
9be86ef
12d2ae7
 
 
 
9be86ef
 
12d2ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
tags:
- merge
- mergekit
- lazymergekit
license: apache-2.0
thumbnail: "https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/Jmu5DHPZwv4so5Tn-xkIO.png"
---

# DolphinHermesPro-ModelStock

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/Jmu5DHPZwv4so5Tn-xkIO.png)

DolphinHermesPro-ModelStock is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):

```yaml
models:
  - model: cognitivecomputations/dolphin-2.8-experiment26-7b
  - model: NousResearch/Hermes-2-Pro-Mistral-7B
merge_method: model_stock
base_model: mistralai/Mistral-7B-v0.1
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kquant03/DolphinHermesPro-ModelStock"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```