File size: 1,399 Bytes
12d2ae7 92b0af2 9be86ef 12d2ae7 9be86ef 12d2ae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
tags:
- merge
- mergekit
- lazymergekit
license: apache-2.0
thumbnail: "https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/Jmu5DHPZwv4so5Tn-xkIO.png"
---
# DolphinHermesPro-ModelStock
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/Jmu5DHPZwv4so5Tn-xkIO.png)
DolphinHermesPro-ModelStock is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
```yaml
models:
- model: cognitivecomputations/dolphin-2.8-experiment26-7b
- model: NousResearch/Hermes-2-Pro-Mistral-7B
merge_method: model_stock
base_model: mistralai/Mistral-7B-v0.1
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kquant03/DolphinHermesPro-ModelStock"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |