--- tags: - merge - mergekit - lazymergekit - Kukedlc/SomeModelsMerge-7b - Kukedlc/MyModelsMerge-7b base_model: - Kukedlc/SomeModelsMerge-7b - Kukedlc/MyModelsMerge-7b license: apache-2.0 --- # NeuralGanesha-7b ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/ta2vBMskD23yihQnu4aXo.png) NeuralGanesha-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/SomeModelsMerge-7b](https://huggingface.co/Kukedlc/SomeModelsMerge-7b) * [Kukedlc/MyModelsMerge-7b](https://huggingface.co/Kukedlc/MyModelsMerge-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: Kukedlc/SomeModelsMerge-7b layer_range: [0, 32] - model: Kukedlc/MyModelsMerge-7b layer_range: [0, 32] merge_method: slerp base_model: Kukedlc/SomeModelsMerge-7b parameters: t: - filter: self_attn value: [0.1, 0.6, 0.3, 0.7, 1] - filter: mlp value: [0.9, 0.4, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralGanesha-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```