File size: 3,641 Bytes
2b639d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db211ad
 
 
2b639d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db211ad
 
 
2b639d0
 
 
 
db211ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b639d0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-english-to-hausa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-english-to-hausa

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7088
- Bleu: 71.7187
- Gen Len: 14.3652

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 3.1612        | 1.0   | 749   | 1.7523          | 32.7424 | 15.2302 |
| 1.5573        | 2.0   | 1498  | 1.0553          | 53.4401 | 14.5568 |
| 1.0462        | 3.0   | 2247  | 0.7899          | 60.8893 | 14.71   |
| 0.8071        | 4.0   | 2996  | 0.6780          | 64.3438 | 14.4066 |
| 0.6602        | 5.0   | 3745  | 0.6089          | 66.0887 | 14.127  |
| 0.5562        | 6.0   | 4494  | 0.5741          | 66.8902 | 14.1295 |
| 0.4872        | 7.0   | 5243  | 0.5497          | 68.4261 | 14.3395 |
| 0.4299        | 8.0   | 5992  | 0.5412          | 68.9385 | 14.3446 |
| 0.3872        | 9.0   | 6741  | 0.5377          | 69.5675 | 14.2603 |
| 0.3478        | 10.0  | 7490  | 0.5356          | 70.0045 | 14.3615 |
| 0.3147        | 11.0  | 8239  | 0.5312          | 70.1895 | 14.4524 |
| 0.2848        | 12.0  | 8988  | 0.5484          | 70.8151 | 14.366  |
| 0.2584        | 13.0  | 9737  | 0.5523          | 70.6127 | 14.2939 |
| 0.2342        | 14.0  | 10486 | 0.5642          | 70.7368 | 14.3301 |
| 0.2122        | 15.0  | 11235 | 0.5775          | 70.9399 | 14.3635 |
| 0.1928        | 16.0  | 11984 | 0.5935          | 71.2577 | 14.352  |
| 0.1757        | 17.0  | 12733 | 0.5964          | 71.2056 | 14.3929 |
| 0.1608        | 18.0  | 13482 | 0.6085          | 71.0265 | 14.3877 |
| 0.1475        | 19.0  | 14231 | 0.6219          | 71.5491 | 14.3812 |
| 0.1352        | 20.0  | 14980 | 0.6285          | 71.5971 | 14.3675 |
| 0.1237        | 21.0  | 15729 | 0.6468          | 71.4863 | 14.3782 |
| 0.1142        | 22.0  | 16478 | 0.6652          | 71.5849 | 14.3734 |
| 0.1082        | 23.0  | 17227 | 0.6733          | 71.6037 | 14.3298 |
| 0.0998        | 24.0  | 17976 | 0.6852          | 71.6926 | 14.4066 |
| 0.0962        | 25.0  | 18725 | 0.6899          | 71.7003 | 14.358  |
| 0.0915        | 26.0  | 19474 | 0.6994          | 71.6191 | 14.3702 |
| 0.0882        | 27.0  | 20223 | 0.7033          | 71.5731 | 14.3537 |
| 0.0857        | 28.0  | 20972 | 0.7084          | 71.6407 | 14.3618 |
| 0.0853        | 29.0  | 21721 | 0.7086          | 71.7115 | 14.3635 |
| 0.0847        | 30.0  | 22470 | 0.7088          | 71.7187 | 14.3652 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1