--- library_name: transformers license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-deberta-base-finetuned-semeval-aug results: [] --- # CS221-deberta-base-finetuned-semeval-aug This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2871 - F1: 0.8364 - Roc Auc: 0.8738 - Accuracy: 0.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.2713 | 1.0 | 139 | 0.3886 | 0.7310 | 0.8051 | 0.4228 | | 0.2914 | 2.0 | 278 | 0.3337 | 0.7849 | 0.8464 | 0.5248 | | 0.2201 | 3.0 | 417 | 0.3073 | 0.7995 | 0.8511 | 0.5501 | | 0.1444 | 4.0 | 556 | 0.3027 | 0.8275 | 0.8727 | 0.6007 | | 0.0964 | 5.0 | 695 | 0.2871 | 0.8364 | 0.8738 | 0.6387 | | 0.0536 | 6.0 | 834 | 0.3024 | 0.8432 | 0.8796 | 0.6612 | | 0.042 | 7.0 | 973 | 0.2909 | 0.8631 | 0.8960 | 0.6920 | | 0.0334 | 8.0 | 1112 | 0.2976 | 0.8675 | 0.9002 | 0.7037 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0