Kushagra07
commited on
Commit
•
59a3b59
1
Parent(s):
93dc94f
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/dit-base-finetuned-rvlcdip
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
model-index:
|
13 |
+
- name: dit-base-finetuned-rvlcdip-finetuned-ind-17-imbalanced-aadhaarmask
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.8458918688803746
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.8458918688803746
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8445087759723635
|
34 |
+
- name: Precision
|
35 |
+
type: precision
|
36 |
+
value: 0.8462519380607423
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# dit-base-finetuned-rvlcdip-finetuned-ind-17-imbalanced-aadhaarmask
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3727
|
47 |
+
- Accuracy: 0.8459
|
48 |
+
- Recall: 0.8459
|
49 |
+
- F1: 0.8445
|
50 |
+
- Precision: 0.8463
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 5e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 32
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 10
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
|
83 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
84 |
+
| 0.9625 | 0.9974 | 293 | 0.8121 | 0.7812 | 0.7812 | 0.7600 | 0.7620 |
|
85 |
+
| 0.7711 | 1.9983 | 587 | 0.5780 | 0.8135 | 0.8135 | 0.7960 | 0.7843 |
|
86 |
+
| 0.555 | 2.9991 | 881 | 0.4868 | 0.8255 | 0.8255 | 0.8133 | 0.8133 |
|
87 |
+
| 0.6008 | 4.0 | 1175 | 0.4475 | 0.8357 | 0.8357 | 0.8281 | 0.8253 |
|
88 |
+
| 0.5318 | 4.9974 | 1468 | 0.4478 | 0.8267 | 0.8267 | 0.8221 | 0.8254 |
|
89 |
+
| 0.3382 | 5.9983 | 1762 | 0.3946 | 0.8463 | 0.8463 | 0.8412 | 0.8427 |
|
90 |
+
| 0.4307 | 6.9991 | 2056 | 0.4083 | 0.8344 | 0.8344 | 0.8317 | 0.8362 |
|
91 |
+
| 0.4613 | 8.0 | 2350 | 0.3915 | 0.8442 | 0.8442 | 0.8429 | 0.8481 |
|
92 |
+
| 0.3247 | 8.9974 | 2643 | 0.3758 | 0.8421 | 0.8421 | 0.8402 | 0.8395 |
|
93 |
+
| 0.3965 | 9.9745 | 2930 | 0.3637 | 0.8484 | 0.8484 | 0.8466 | 0.8470 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.40.1
|
99 |
+
- Pytorch 2.2.0a0+81ea7a4
|
100 |
+
- Datasets 2.19.0
|
101 |
+
- Tokenizers 0.19.1
|
emissions.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2024-05-02T07:40:49,codecarbon,76eec3b9-d76b-4d9d-81a9-87c13b50ecab,1402.5416791439056,0.00014679413549691073,1.0466293991812927e-07,42.5,76.68039296869011,11.667008399963379,0.01655650557329257,0.0406522055772941,0.004541660804076757,0.06175037195466344,Canada,CAN,quebec,,,Linux-5.15.0-105-generic-x86_64-with-glibc2.35,3.10.12,2.3.5,32,13th Gen Intel(R) Core(TM) i9-13900K,1,1 x NVIDIA GeForce RTX 4060 Ti,-71.2,46.8,31.112022399902344,machine,N,1.0
|
runs/May02_07-17-24_60f4804cf903/events.out.tfevents.1714635707.60f4804cf903.5533.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1a7e8ff1b23dc8f83a806f686171daf4f576732f070e5d9025e4f085a234325
|
3 |
+
size 560
|