Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +140 -3
- config.json +34 -0
- config_sentence_transformers.json +12 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +200 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 2048,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": true,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,140 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
---
|
9 |
+
|
10 |
+
# SentenceTransformer
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
- **Model Type:** Sentence Transformer
|
18 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
19 |
+
- **Maximum Sequence Length:** 8192 tokens
|
20 |
+
- **Output Dimensionality:** 2048 tokens
|
21 |
+
- **Similarity Function:** Cosine Similarity
|
22 |
+
<!-- - **Training Dataset:** Unknown -->
|
23 |
+
<!-- - **Language:** Unknown -->
|
24 |
+
<!-- - **License:** Unknown -->
|
25 |
+
|
26 |
+
### Model Sources
|
27 |
+
|
28 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
29 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
30 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
31 |
+
|
32 |
+
### Full Model Architecture
|
33 |
+
|
34 |
+
```
|
35 |
+
SentenceTransformer(
|
36 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: LlamaModel
|
37 |
+
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
|
38 |
+
)
|
39 |
+
```
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
### Direct Usage (Sentence Transformers)
|
44 |
+
|
45 |
+
First install the Sentence Transformers library:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
pip install -U sentence-transformers
|
49 |
+
```
|
50 |
+
|
51 |
+
Then you can load this model and run inference.
|
52 |
+
```python
|
53 |
+
from sentence_transformers import SentenceTransformer
|
54 |
+
|
55 |
+
# Download from the 🤗 Hub
|
56 |
+
model = SentenceTransformer("Kwaipilot/OASIS-code-1.3B")
|
57 |
+
# Run inference
|
58 |
+
sentences = [
|
59 |
+
'The weather is lovely today.',
|
60 |
+
"It's so sunny outside!",
|
61 |
+
'He drove to the stadium.',
|
62 |
+
]
|
63 |
+
embeddings = model.encode(sentences)
|
64 |
+
print(embeddings.shape)
|
65 |
+
# [3, 2048]
|
66 |
+
|
67 |
+
# Get the similarity scores for the embeddings
|
68 |
+
similarities = model.similarity(embeddings, embeddings)
|
69 |
+
print(similarities.shape)
|
70 |
+
# [3, 3]
|
71 |
+
```
|
72 |
+
|
73 |
+
<!--
|
74 |
+
### Direct Usage (Transformers)
|
75 |
+
|
76 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
77 |
+
|
78 |
+
</details>
|
79 |
+
-->
|
80 |
+
|
81 |
+
<!--
|
82 |
+
### Downstream Usage (Sentence Transformers)
|
83 |
+
|
84 |
+
You can finetune this model on your own dataset.
|
85 |
+
|
86 |
+
<details><summary>Click to expand</summary>
|
87 |
+
|
88 |
+
</details>
|
89 |
+
-->
|
90 |
+
|
91 |
+
<!--
|
92 |
+
### Out-of-Scope Use
|
93 |
+
|
94 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
95 |
+
-->
|
96 |
+
|
97 |
+
<!--
|
98 |
+
## Bias, Risks and Limitations
|
99 |
+
|
100 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
101 |
+
-->
|
102 |
+
|
103 |
+
<!--
|
104 |
+
### Recommendations
|
105 |
+
|
106 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
107 |
+
-->
|
108 |
+
|
109 |
+
## Training Details
|
110 |
+
|
111 |
+
### Framework Versions
|
112 |
+
- Python: 3.9.20
|
113 |
+
- Sentence Transformers: 3.1.1
|
114 |
+
- Transformers: 4.45.2
|
115 |
+
- PyTorch: 2.4.1+cu121
|
116 |
+
- Accelerate: 1.0.0
|
117 |
+
- Datasets: 3.0.1
|
118 |
+
- Tokenizers: 0.20.1
|
119 |
+
|
120 |
+
## Citation
|
121 |
+
|
122 |
+
### BibTeX
|
123 |
+
|
124 |
+
<!--
|
125 |
+
## Glossary
|
126 |
+
|
127 |
+
*Clearly define terms in order to be accessible across audiences.*
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
## Model Card Authors
|
132 |
+
|
133 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
134 |
+
-->
|
135 |
+
|
136 |
+
<!--
|
137 |
+
## Model Card Contact
|
138 |
+
|
139 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
140 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./OASIS-1.3B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 32013,
|
9 |
+
"eos_token_id": 32014,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 5504,
|
15 |
+
"max_position_embeddings": 16384,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"num_key_value_heads": 16,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-06,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 4.0,
|
25 |
+
"rope_type": "linear",
|
26 |
+
"type": "linear"
|
27 |
+
},
|
28 |
+
"rope_theta": 100000,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "bfloat16",
|
31 |
+
"transformers_version": "4.45.2",
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 32256
|
34 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Instruct: Given a code search query, retrieve relevant code snippet that answer the query\nQuery: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": "cosine"
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc7afe65cd6a0dce776703fb3554fdc4ece9fa61e22b7a75bd3fa744f76d7043
|
3 |
+
size 2560847128
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end▁of▁sentence|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"32000": {
|
7 |
+
"content": "õ",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": false
|
13 |
+
},
|
14 |
+
"32001": {
|
15 |
+
"content": "÷",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": false
|
21 |
+
},
|
22 |
+
"32002": {
|
23 |
+
"content": "Á",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"32003": {
|
31 |
+
"content": "ý",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"32004": {
|
39 |
+
"content": "À",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"32005": {
|
47 |
+
"content": "ÿ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"32006": {
|
55 |
+
"content": "ø",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"32007": {
|
63 |
+
"content": "ú",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"32008": {
|
71 |
+
"content": "þ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"32009": {
|
79 |
+
"content": "ü",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"32010": {
|
87 |
+
"content": "ù",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"32011": {
|
95 |
+
"content": "ö",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"32012": {
|
103 |
+
"content": "û",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"32013": {
|
111 |
+
"content": "<|begin▁of▁sentence|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"32014": {
|
119 |
+
"content": "<|end▁of▁sentence|>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": true
|
125 |
+
},
|
126 |
+
"32015": {
|
127 |
+
"content": "<|fim▁hole|>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"32016": {
|
135 |
+
"content": "<|fim▁begin|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"32017": {
|
143 |
+
"content": "<|fim▁end|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"32018": {
|
151 |
+
"content": "<pad>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"32019": {
|
159 |
+
"content": "<|User|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"32020": {
|
167 |
+
"content": "<|Assistant|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"32021": {
|
175 |
+
"content": "<|EOT|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"bos_token": "<|begin▁of▁sentence|>",
|
184 |
+
"clean_up_tokenization_spaces": false,
|
185 |
+
"eos_token": "<|end▁of▁sentence|>",
|
186 |
+
"legacy": true,
|
187 |
+
"max_length": 1024,
|
188 |
+
"model_max_length": 8192,
|
189 |
+
"pad_to_multiple_of": null,
|
190 |
+
"pad_token": "<|end▁of▁sentence|>",
|
191 |
+
"pad_token_type_id": 0,
|
192 |
+
"padding_side": "left",
|
193 |
+
"sp_model_kwargs": {},
|
194 |
+
"stride": 0,
|
195 |
+
"tokenizer_class": "LlamaTokenizer",
|
196 |
+
"truncation_side": "right",
|
197 |
+
"truncation_strategy": "longest_first",
|
198 |
+
"unk_token": null,
|
199 |
+
"use_default_system_prompt": false
|
200 |
+
}
|