File size: 1,576 Bytes
698c354
 
6168dbc
698c354
f032538
698c354
 
f032538
 
698c354
07d75a3
d4bef61
 
 
 
 
 
 
 
 
 
 
 
 
ee86545
698c354
 
 
 
6168dbc
698c354
f7e5ec0
6168dbc
f7e5ec0
e7a6383
698c354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e5ec0
 
698c354
f7e5ec0
 
698c354
 
 
f7e5ec0
7dfd4f9
698c354
6168dbc
698c354
 
d4bef61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: bookbot/distil-ast-audioset
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: train
      split: train
      args: train
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.89
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distil-ast-audioset-finetuned-gtzan

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7907
- Accuracy: 0.89

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3