LYJ123123 commited on
Commit
bd9afa6
1 Parent(s): 74485cb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - scene_parse_150
8
+ model-index:
9
+ - name: segformer-b0-scene-parse-150
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-scene-parse-150
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 4.9393
21
+ - Mean Iou: 0.0036
22
+ - Mean Accuracy: 0.0214
23
+ - Overall Accuracy: 0.0867
24
+ - Per Category Iou: [0.16545709180085544, 0.0, 0.0, 0.0, 0.0, 0.058472783227543755, nan, 0.0, 0.0, 0.0, 0.007622227522060578, nan, 3.137911197113122e-05, 0.0, 0.058198708972300964, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.041340794105739556, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0024778587375187066, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.016656203154428628, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0007263579350175389, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0697279103015839, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.012292855202390655, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0]
25
+ - Per Category Accuracy: [0.18326833008776816, nan, 0.0, 0.0, 0.0, 0.09695526450076544, nan, nan, 0.0, nan, 0.009522447471605468, nan, 0.0035169988276670576, 0.0, 0.06740772973614463, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.07055362102652567, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0025769907891715358, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.018805149717922753, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0010196214966054064, nan, nan, nan, nan, nan, nan, 0.23142163272931066, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.019714628036161638, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan]
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
56
+ | 4.8574 | 1.0 | 20 | 4.9393 | 0.0036 | 0.0214 | 0.0867 | [0.16545709180085544, 0.0, 0.0, 0.0, 0.0, 0.058472783227543755, nan, 0.0, 0.0, 0.0, 0.007622227522060578, nan, 3.137911197113122e-05, 0.0, 0.058198708972300964, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.041340794105739556, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0024778587375187066, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.016656203154428628, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0007263579350175389, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0697279103015839, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.012292855202390655, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0] | [0.18326833008776816, nan, 0.0, 0.0, 0.0, 0.09695526450076544, nan, nan, 0.0, nan, 0.009522447471605468, nan, 0.0035169988276670576, 0.0, 0.06740772973614463, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.07055362102652567, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0025769907891715358, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.018805149717922753, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0010196214966054064, nan, nan, nan, nan, nan, nan, 0.23142163272931066, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.019714628036161638, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan] |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.31.0
62
+ - Pytorch 2.0.1+cu118
63
+ - Datasets 2.14.4
64
+ - Tokenizers 0.13.3