File size: 9,492 Bytes
6889235 adc3451 1b23db2 adc3451 1b23db2 2cc7468 1b23db2 2cc7468 1b23db2 1e61310 1b23db2 1e61310 1b23db2 adc3451 1b23db2 1e61310 1b23db2 1e61310 1b23db2 1e61310 22265f5 1e61310 6274f30 1e61310 6274f30 1e61310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
pipeline_tag: sentence-similarity
language: fr
datasets:
- stsb_multi_mt
tags:
- Text
- Sentence Similarity
- Sentence-Embedding
- camembert-base
license: apache-2.0
model-index:
- name: sentence-flaubert-base by Van Tuan DANG
results:
- task:
name: Sentence-Embedding
type: Text Similarity
dataset:
name: Text Similarity fr
type: stsb_multi_mt
args: fr
metrics:
- name: Test Pearson correlation coefficient
type: Pearson_correlation_coefficient
value: 87.14
library_name: sentence-transformers
---
## Pre-trained sentence embedding models are the state-of-the-art of Sentence Embeddings for French.
Model is Fine-tuned using pre-trained [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) and
[Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) combined with [Augmented SBERT](https://aclanthology.org/2021.naacl-main.28.pdf) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) along with Pair Sampling Strategies through 2 models [CrossEncoder-camembert-large](https://huggingface.co/dangvantuan/CrossEncoder-camembert-large) and [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)
## Usage
The model can be used directly (without a language model) as follows:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Lajavaness/sentence-flaubert-base")
sentences = ["Un avion est en train de décoller.",
"Un homme joue d'une grande flûte.",
"Un homme étale du fromage râpé sur une pizza.",
"Une personne jette un chat au plafond.",
"Une personne est en train de plier un morceau de papier.",
]
embeddings = model.encode(sentences)
```
## Evaluation
The model can be evaluated as follows on the French test data of stsb.
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.readers import InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from datasets import load_dataset
def convert_dataset(dataset):
dataset_samples=[]
for df in dataset:
score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[df['sentence1'],
df['sentence2']], label=score)
dataset_samples.append(inp_example)
return dataset_samples
# Loading the dataset for evaluation
df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
df_test = load_dataset("stsb_multi_mt", name="fr", split="test")
# Convert the dataset for evaluation
# For Dev set:
dev_samples = convert_dataset(df_dev)
val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
val_evaluator(model, output_path="./")
# For Test set:
test_samples = convert_dataset(df_test)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path="./")
```
**Test Result**:
The performance is measured using Pearson and Spearman correlation on the sts-benchmark:
- On dev
| Model | Pearson correlation | Spearman correlation | #params |
| ------------- | ------------- | ------------- |------------- |
| [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base)| **87.14** |**87.10** | 137M |
| [Lajavaness/sentence-camembert-base](https://huggingface.co/Lajavaness/sentence-camembert-base)| 86.88 |86.73 | 110M |
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base)| 86.73 |86.54 | 110M |
[inokufu/flaubert-base-uncased-xnli-sts](https://huggingface.co/inokufu/flaubert-base-uncased-xnli-sts)| 85.85 |85.71 | 137M |
| [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 79.22 | 79.16|135M |
- On test: Pearson and Spearman correlation are evaluated on many different benchmarks dataset:
**Pearson score**
| Model | [STS-B](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) | [STS12-fr ](https://huggingface.co/datasets/Lajavaness/STS12-fr)| [STS13-fr](https://huggingface.co/datasets/Lajavaness/STS13-fr) | [STS14-fr](https://huggingface.co/datasets/Lajavaness/STS14-fr) | [STS15-fr](https://huggingface.co/datasets/Lajavaness/STS15-fr) | [STS16-fr](https://huggingface.co/datasets/Lajavaness/STS16-fr) | [SICK-fr](https://huggingface.co/datasets/Lajavaness/SICK-fr) | params |
|-----------------------------------------------------------|---------|----------|----------|----------|----------|----------|---------|--------|
| [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base) | **85.5** | **86.64** | **87.24** | **85.68** | **88.00** | **75.78** | **82.84** | 137M |
| [Lajavaness/sentence-camembert-base](https://huggingface.co/Lajavaness/sentence-camembert-base) | 83.46 | 84.49 | 84.61 | 83.94 | 86.94 | 75.20 | 82.86 | 110M |
| [inokufu/flaubert-base-uncased-xnli-sts](https://huggingface.co/inokufu/flaubert-base-uncased-xnli-sts) | 82.82 | 84.79 | 85.76 | 82.81 | 85.38 | 74.05 | 82.23 | 137M |
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base) | 82.36 | 82.06 | 84.08 | 81.51 | 85.54 | 73.97 | 80.91 | 110M |
| [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased)| 78.63 | 72.51 | 67.25 | 70.12 | 79.93 | 66.67 | 77.76 | 135M |
| [hugorosen/flaubert_base_uncased-xnli-sts](https://huggingface.co/hugorosen/flaubert_base_uncased-xnli-sts) | 78.38 | 79.00 | 77.61 | 76.56 | 79.03 | 71.22 | 80.58 | 137M |
| [antoinelouis/biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 76.97 | 71.43 | 73.50 | 70.56 | 78.44 | 71.23 | 77.62 | 110M |
**Spearman score**
| Model | [STS-B](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) | [STS12-fr ](https://huggingface.co/datasets/Lajavaness/STS12-fr)| [STS13-fr](https://huggingface.co/datasets/Lajavaness/STS13-fr) | [STS14-fr](https://huggingface.co/datasets/Lajavaness/STS14-fr) | [STS15-fr](https://huggingface.co/datasets/Lajavaness/STS15-fr) | [STS16-fr](https://huggingface.co/datasets/Lajavaness/STS16-fr) | [SICK-fr](https://huggingface.co/datasets/Lajavaness/SICK-fr) | params |
|-----------------------------------------------------------|---------|----------|----------|----------|----------|----------|---------|--------|
| [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base) | **85.67** | **80.00** | **86.91** | **84.59** | **88.10** | **77.84** | **77.55** | 137M |
| [inokufu/flaubert-base-uncased-xnli-sts](https://huggingface.co/inokufu/flaubert-base-uncased-xnli-sts) | 83.07 | 77.34 | 85.88 | 80.96 | 85.70 | 76.43 | 77.00 | 137M |
| [Lajavaness/sentence-camembert-base](https://huggingface.co/Lajavaness/sentence-camembert-base) | 82.92 | 77.71 | 84.19 | 81.83 | 87.04 | 76.81 | 76.36 | 110M |
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base) | 81.64 | 75.45 | 83.86 | 78.63 | 85.66 | 75.36 | 74.18 | 110M |
| [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 77.49 | 69.80 | 68.85 | 68.17 | 80.27 | 70.04 | 72.49 | 135M |
| [hugorosen/flaubert_base_uncased-xnli-sts](https://huggingface.co/hugorosen/flaubert_base_uncased-xnli-sts) | 76.93 | 68.96 | 77.62 | 71.87 | 79.33 | 72.86 | 73.91 | 137M |
| [antoinelouis/biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 75.55 | 66.89 | 73.90 | 67.14 | 78.78 | 72.64 | 72.03 | 110M |
## Citation
@article{reimers2019sentence,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers, Iryna Gurevych},
journal={https://arxiv.org/abs/1908.10084},
year={2019}
}
@article{martin2020camembert,
title={CamemBERT: a Tasty French Language Mode},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
@article{thakur2020augmented,
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
journal={arXiv e-prints},
pages={arXiv--2010},
year={2020} |