--- language: "zh" thumbnail: tags: - speechbrain - embeddings - Speaker - Verification - Identification - pytorch - ECAPA - TDNN license: "apache-2.0" datasets: - cnceleb metrics: - EER ---

# Speaker Verification with ECAPA-TDNN embeddings on cnceleb This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain. The system can be used to extract speaker embeddings as well. It is trained on cnceleb 1+ cnceleb2 training data. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance on cnceleb1-test set(Cleaned) is: | Release | EER(%) | minDCF | |:-------------:|:--------------:|:--------------:| ## Pipeline description This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Compute your speaker embeddings ```python import torchaudio from speechbrain.pretrained import EncoderClassifier classifier = EncoderClassifier.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb") signal, fs =torchaudio.load('samples/audio_samples/example1.wav') embeddings = classifier.encode_batch(signal) ``` The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. ### Perform Speaker Verification ```python from speechbrain.pretrained import SpeakerRecognition verification = SpeakerRecognition.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb", savedir="pretrained_models/spkrec-ecapa-cnceleb") score, prediction = verification.verify_files("speechbrain/spkrec-ecapa-cnceleb/example1.wav", "speechbrain/spkrec-ecapa-cnceleb/example2.flac") ``` The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise. ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (aa018540). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/LanceaKing/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/CNCeleb/SpeakerRec python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing ECAPA-TDNN ``` @inproceedings{DBLP:conf/interspeech/DesplanquesTD20, author = {Brecht Desplanques and Jenthe Thienpondt and Kris Demuynck}, editor = {Helen Meng and Bo Xu and Thomas Fang Zheng}, title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation in {TDNN} Based Speaker Verification}, booktitle = {Interspeech 2020}, pages = {3830--3834}, publisher = {{ISCA}}, year = {2020}, } ``` # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and FrančŽ½ois Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/