File size: 27,124 Bytes
0fd282e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2023, KBLab at the National Library of Sweden. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Script to convert NeMo Megatron T5/UL2 model to Huggingface T5 model.
Based off of NVIDIA's conversion script at: https://github.com/NVIDIA/NeMo/blob/main/scripts/nlp_language_modeling/hf_t5-v1_1_to_nemo.py .
We reverse their conversion process.
NOTE: You may want to double check the conversion if you are using a custom config with shared_decoder_tokens_head_embeddings=False.
"""
import argparse
import os
import collections
import sys
import torch
from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model
from omegaconf.omegaconf import OmegaConf
from pytorch_lightning.trainer.trainer import Trainer
from transformers import AutoTokenizer, T5Config, T5ForConditionalGeneration
# Make hidden_size, num_heads, kv_dim configurable as args with argparse
def load_nemo_megatron_model(checkpoint_path, devices=1, num_nodes=1, accelerator="gpu"):
trainer = Trainer(devices=devices, num_nodes=num_nodes, accelerator=accelerator)
model = MegatronT5Model.load_from_checkpoint(checkpoint_path, trainer=trainer)
return model
def load_huggingface_t5_model(model_config_path):
"""
# You need to configure config yourself based on your hparams during training
# See examples of UL2 hugginface configs:
# https://huggingface.co/google/flan-ul2/blob/main/config.json
# https://huggingface.co/Finnish-NLP/ul2-base-nl36-finnish/blob/main/config.json
"""
t5_config = T5Config.from_pretrained(model_config_path)
t5_model = T5ForConditionalGeneration(t5_config)
return t5_model
def _get_model_type_block_layer_hf(k):
"""
Get info from Huggingface model block and layer names
Returns model_type, block number, layer number.
"""
if k.startswith("encoder"):
model_type = "encoder"
elif k.startswith("decoder"):
model_type = "decoder"
else:
raise ValueError(f"Unknown model type for {k}")
return model_type, int(k.split(".")[2]), int(k.split(".")[4])
def _get_model_type_layer_nemo(k):
"""
Get info from NeMo layer names.
Returns model_type, layer number.
5th element in the split is the layer number.
"""
print(k)
if "encoder" in k:
model_type = "encoder"
elif "decoder" in k:
model_type = "decoder"
else:
raise ValueError(f"Unknown model type for {k}")
return model_type, int(k.split(".")[5])
def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace BERT.
input_shape = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 2)
param = param.transpose(1, 2).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param
def convert_nemo_to_hf(
nemo_weights, fix_qkv_ordering=False, hidden_size=768, num_heads=12, kv_dim=64, checkpoint_version=2.0
):
"""
Convert NeMo Megatron T5/UL2 model to Huggingface T5 model.
Args:
nemo_weights (dict): NeMo model weights (state dict).
fix_qkv_ordering (bool): Whether to fix the query, key, value ordering in the self-attention blocks.
hidden_size (int): Hidden size of the model.
num_heads (int): Number of attention heads.
kv_dim (int): Projection weights dimension in multi-head attention. Generally: hidden_size // num_heads.
checkpoint_version (float): Megatron checkpoint version (No idea how to get this from the checkpoint itself).
Returns:
hf_weights (dict): Huggingface model weights (state dict).
"""
print(f"Found {len(nemo_weights.keys())} keys in the NeMo checkpoint")
hf_weights = collections.OrderedDict()
for k, v in nemo_weights.items():
#################################################
###### Enc-Dec Embeddings and Output Layer ######
#################################################
# Tied decoder embedding and decoder output layer.
if k == "enc_dec_model.decoder_embedding.word_embeddings.weight":
# shared.weight, lm_head.weight, decoder.embed_tokens.weight and encoder.embed_tokens.weight
# are the same in HF when tied_word_embeddings=True in T5Config.
# Corresponding setting in NeMo config: share_decoder_tokens_head_embeddings=True (share decoder vocab embeddings and decoder LM Head)
# and share_token_embeddings=True (share encoder/decoder vocab embeddings).
# Shared decoder embeddings and LM head yield best result according to: https://aclanthology.org/2021.emnlp-main.465.pdf#page=7 .
# Check if encoder and decoder token embeddings are the same.
is_shared_encdec = torch.allclose(
v, nemo_weights["enc_dec_model.encoder_embedding.word_embeddings.weight"]
)
if is_shared_encdec:
print("Found shared encoder and decoder embeddings")
hf_weights["shared.weight"] = v
else:
ValueError(
(
f"Found separate encoder and decoder embeddings in NeMo checkpoint. \n"
f"Not supported in T5 HF implementation. \n"
f"You should probably set 'share_token_embeddings' to True in your NeMo config. \n"
)
)
if k == "enc_dec_model.tokens_head.weight":
# This weight doesn't seem to exist in Nemo when share_decoder_tokens_head_embeddings=True.
# Don't worry though. If you set tie_word_embeddings=True in HF, this weight will be
# created automatically when loading the model in HF and tied to
# shared.weight / decoder.embed_tokens.weight.
hf_weights["lm_head.weight"] = v
print(f"Mapped {k} to lm_head.weight")
elif k == "enc_dec_model.tokens_head.bias":
# HF doesn't have a bias for lm_head.weight
ValueError(
(
f"Found bias for lm_head.weight in NeMo checkpoint. This is not supported in HF T5 implementation. \n"
f"You should probably set 'tokens_head_bias' to False in your NeMo config. \n"
f"If your checkpoint is from older version of Megatron, you may also need to set 'share_decoder_tokens_head_embeddings' to False in NeMo config. \n"
f"See: https://github.com/NVIDIA/NeMo/blob/557c4b7ae766faf050374e6b9a862e2e67385b10/nemo/collections/nlp/models/language_modeling/megatron_lm_encoder_decoder_model.py#L231-L236"
)
)
# hf_weights["lm_head.bias"] = v
# print(f"Mapped {k} to lm_head.bias")
# Decoder embeddings
elif k == "enc_dec_model.decoder_embedding.word_embeddings.weight":
hf_weights["decoder.embed_tokens.weight"] = v
elif k == "enc_dec_model.encoder_embedding.word_embeddings.weight":
hf_weights["encoder.embed_tokens.weight"] = v
print(f"Mapped {k} to encoder.embed_tokens.weight")
#################################################
################# RPE Weights ###################
#################################################
elif k == "enc_dec_model.encoder_relative_position_embedding.relative_position_embedding.weight":
hf_weights["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = v
print(f"Mapped {k} to encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight")
elif k == "enc_dec_model.decoder_relative_position_embedding.relative_position_embedding.weight":
hf_weights["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = v
print(f"Mapped {k} to decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight")
#################################################
#################$ LayerNorm ####################
#################################################
# Block in HF corresponds to layer in NeMo.
# Layer in HF does not correspond to anything in NeMo.
# In Huggingface: Layer 0 is input layer norm, layer 1 is layer norm on self attn output,
# layer 2 is layer norm for cross attn output in decoder.
# In NeMo, some layernorm layers (final layernorms) don't have layer number in the name.
# We take care of these early so _get_model_type_layer_nemo function doesn't fail.
elif "layernorm" in k:
if "final" in k:
model_type = "encoder" if "encoder" in k else "decoder"
# Layer 2 in HF is always FFN + LayerNorm
hf_weights[f"{model_type}.final_layer_norm.weight"] = v
print(f"Mapped {k} to {model_type}.final_layer_norm.weight")
# if "bias" in k:
# hf_weights[f"{model_type}.block.final_layer_norm.bias"] = v
# print(f"Mapped {k} to {model_type}.block.final_layer_norm.bias")
else:
model_type, layer_number = _get_model_type_layer_nemo(k)
if "input_layernorm" in k and model_type == "encoder":
# Input layer norm is always layer 0 in HF
hf_weights[f"encoder.block.{layer_number}.layer.0.layer_norm.weight"] = v
print(f"Mapped {k} to encoder.block.{layer_number}.layer.0.layer_norm.weight")
# if "bias" in k:
# hf_weights[f"encoder.block.{layer_number}.layer.0.layer_norm.bias"] = v
# print(f"Mapped {k} to encoder.block.{layer_number}.layer.0.layer_norm.bias")
elif "post_attention_layernorm" in k and model_type == "encoder":
# Layer 1 in HF is layer norm for self attn output
hf_weights[f"{model_type}.block.{layer_number}.layer.1.layer_norm.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.1.layer_norm.weight")
# if "bias" in k:
# hf_weights[f"{model_type}.block.{layer_number}.layer.1.layer_norm.bias"] = v
# print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.1.layer_norm.bias")
elif "input_layernorm" in k and model_type == "decoder":
# Input layer norm is always layer 0 in HF
hf_weights[f"decoder.block.{layer_number}.layer.0.layer_norm.weight"] = v
print(f"Mapped {k} to decoder.block.{layer_number}.layer.0.layer_norm.weight")
# if "bias" in k:
# hf_weights[f"decoder.block.{layer_number}.layer.0.layer_norm.bias"] = v
# print(f"Mapped {k} to decoder.block.{layer_number}.layer.0.layer_norm.bias")
elif "post_attention_layernorm" in k and model_type == "decoder":
# Layer 1 in HF is layer norm for self attn output
hf_weights[f"{model_type}.block.{layer_number}.layer.1.layer_norm.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.1.layer_norm.weight")
# if "bias" in k:
# hf_weights[f"{model_type}.block.{layer_number}.layer.1.layer_norm.bias"] = v
# print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.1.layer_norm.bias")
elif "post_inter_attention_layernorm" in k and model_type == "decoder":
# Layer 2 in HF is layer norm for cross attn output
hf_weights[f"{model_type}.block.{layer_number}.layer.2.layer_norm.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.2.layer_norm.weight")
# if "bias" in k:
# hf_weights[f"{model_type}.block.{layer_number}.layer.2.layer_norm.bias"] = v
# print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.2.layer_norm.bias")
else:
raise ValueError("Unknown layer_norm key: {}".format(k))
#################################################
############### Attention Layers ################
#################################################
# Self-Attention
# Q, k, V in NeMo-Megatron is bundled into a single matrix.
elif "self_attention.query_key_value.weight" in k:
# Example naming in HF:
# encoder.block.0.layer.0.SelfAttention.q.weight
# decoder.block.0.layer.0.SelfAttention.q.weight
# Model type is either "encoder" or "decoder"
model_type, layer_number = _get_model_type_layer_nemo(k)
if fix_qkv_ordering:
out_val = fix_query_key_value_ordering(
v, checkpoint_version=checkpoint_version, num_splits=3, num_heads=num_heads, hidden_size=kv_dim
)
else:
out_val = v
q_weights = out_val[0 * hidden_size : 1 * hidden_size, :]
k_weights = out_val[1 * hidden_size : 2 * hidden_size, :]
v_weights = out_val[2 * hidden_size : 3 * hidden_size, :]
# Layer 0 in HF is always self attn
hf_weights[f"{model_type}.block.{layer_number}.layer.0.SelfAttention.q.weight"] = q_weights
hf_weights[f"{model_type}.block.{layer_number}.layer.0.SelfAttention.k.weight"] = k_weights
hf_weights[f"{model_type}.block.{layer_number}.layer.0.SelfAttention.v.weight"] = v_weights
print(
(
f"Mapped {k} to: \n",
f"{model_type}.block.{layer_number}.layer.0.SelfAttention.q.weight \n",
f"{model_type}.block.{layer_number}.layer.0.SelfAttention.k.weight \n",
f"{model_type}.block.{layer_number}.layer.0.SelfAttention.v.weight \n",
)
)
# If we trained with bias=True in NeMo we will have bias terms for all weight matrices.
# Huggingface doesn't support optional bias terms in their T5 implementation.
elif "self_attention.query_key_value.bias" in k:
ValueError(
"Bias terms for most weights are not supported in Huggingface T5. Train with bias=False in NeMo config."
)
# Output self-attn matrix.
elif "self_attention.dense.weight" in k:
model_type, layer_number = _get_model_type_layer_nemo(k)
# Layer 0 in HF still always self attn
hf_weights[f"{model_type}.block.{layer_number}.layer.0.SelfAttention.o.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.0.SelfAttention.o.weight")
# Cross-Attention projection matrices are merged into K, V matrices in NeMo-Megatron.
# Need to split them into K, V matrices in HF.
elif "inter_attention.key_value.weight" in k:
model_type, layer_number = _get_model_type_layer_nemo(k)
if fix_qkv_ordering:
out_val = fix_query_key_value_ordering(
v, checkpoint_version=checkpoint_version, num_splits=2, num_heads=num_heads, hidden_size=kv_dim
)
else:
out_val = v
# Layer 1 in HF is always cross attn
k_weights = out_val[0 * hidden_size : 1 * hidden_size, :]
v_weights = out_val[1 * hidden_size : 2 * hidden_size, :]
hf_weights[f"decoder.block.{layer_number}.layer.1.EncDecAttention.k.weight"] = k_weights
hf_weights[f"decoder.block.{layer_number}.layer.1.EncDecAttention.v.weight"] = v_weights
print(
(
f"Mapped {k} to: \n",
f"decoder.block.{layer_number}.layer.1.EncDecAttention.k.weight \n",
f"decoder.block.{layer_number}.layer.1.EncDecAttention.v.weight \n",
)
)
# Cross-Attention Q matrix is separate in NeMo-Megatron and HF.
elif "inter_attention.query.weight" in k:
model_type, layer_number = _get_model_type_layer_nemo(k)
# Layer 1 in HF is always cross attn
hf_weights[f"decoder.block.{layer_number}.layer.1.EncDecAttention.q.weight"] = v
print(f"Mapped {k} to decoder.block.{layer_number}.layer.1.EncDecAttention.q.weight")
# Output cross-attention matrix.
elif "inter_attention.dense.weight" in k:
model_type, layer_number = _get_model_type_layer_nemo(k)
# Layer 1 in HF is always cross attn
hf_weights[f"decoder.block.{layer_number}.layer.1.EncDecAttention.o.weight"] = v
print(f"Mapped {k} to decoder.block.{layer_number}.layer.1.EncDecAttention.o.weight")
#################################################
#################$ FFN Layers ###################
#################################################
elif "mlp.dense_h_to_4h.weight" in k:
model_type, layer_number = _get_model_type_layer_nemo(k)
if model_type == "encoder":
# FFN + LayerNorm is always layer 1 in HF encoder attention blocks.
hf_weights[f"{model_type}.block.{layer_number}.layer.1.DenseReluDense.wi_0.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.1.DenseReluDense.wi_0.weight")
elif model_type == "decoder":
# FFN + LayerNorm is always layer 2 in HF decoder attention blocks.
hf_weights[f"{model_type}.block.{layer_number}.layer.2.DenseReluDense.wi_0.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.2.DenseReluDense.wi_0.weight")
elif "mlp.dense_h_to_4h_2.weight" in k:
model_type, layer_number = _get_model_type_layer_nemo(k)
if model_type == "encoder":
# FFN + LayerNorm is always layer 1 in HF encoder attention blocks.
hf_weights[f"{model_type}.block.{layer_number}.layer.1.DenseReluDense.wi_1.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.1.DenseReluDense.wi_1.weight")
elif model_type == "decoder":
# FFN + LayerNorm is always layer 2 in HF decoder attention blocks.
hf_weights[f"{model_type}.block.{layer_number}.layer.2.DenseReluDense.wi_1.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.2.DenseReluDense.wi_1.weight")
elif "mlp.dense_4h_to_h.weight" in k:
model_type, layer_number = _get_model_type_layer_nemo(k)
# Layer 2 in HF is always FFN + LayerNorm
if model_type == "encoder":
# FFN + LayerNorm is always layer 1 in HF encoder attention blocks.
hf_weights[f"{model_type}.block.{layer_number}.layer.1.DenseReluDense.wo.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.1.DenseReluDense.wo.weight")
elif model_type == "decoder":
# FFN + LayerNorm is always layer 2 in HF decoder attention blocks.
hf_weights[f"{model_type}.block.{layer_number}.layer.2.DenseReluDense.wo.weight"] = v
print(f"Mapped {k} to {model_type}.block.{layer_number}.layer.2.DenseReluDense.wo.weight")
else:
raise ValueError(f"Unknown key: {k}")
print("Done mapping weights. \n")
print(f"Total keys in converted Huggingface weight mapping: {len(hf_weights.keys())} \n")
return hf_weights
# singularity shell --nv data/nemo2302
def compare_weights_hf_nemo(model, hf_weights, hf_config_path, hf_model_path=None):
"""
Compares the weights of a Huggingface initialized model against Nemo model converted to HF.
Prints if there are any missing keys that were expected but not mapped.
Also compares parameter count of HF initialized model against original unconverted Nemo model.
Args:
model: NeMo model
hf_weights: Dictionary of Huggingface weights
hf_config_path: Path to Huggingface config file to initialize model from.
hf_model_path: Path to Huggingface Hub or local HF model folder, if you alternatively want to
load/initialize from an existing model on HF Hub or disk (optional)
"""
if args.hf_model_path:
# If user supplies a HF hub model path, or local converted model, we load the model from there.
hf_model = T5ForConditionalGeneration.from_pretrained(hf_model_path)
else:
# Otherwise, we load the model from the config.
hf_model = load_huggingface_t5_model(hf_config_path)
print(f"Total keys in converted Huggingface weight mapping: {len(hf_weights.keys())} \n")
print(f"Total keys in Huggingface model initialized from config or HF Hub: {len(hf_model.state_dict().keys())} \n")
# Count the number of parameters in the model
print(
f"Number of parameters in HF model initialized from config or HF hub: {sum(p.numel() for p in hf_model.parameters() if p.requires_grad)}"
)
# Number of parameters in Nemo model
print(f"Number of parameters in Nemo model: {sum(p.numel() for p in model.parameters() if p.requires_grad)} \n")
# Check the set difference between the two sets of model keys (model loaded from config and converted model)
print(
(
f"Keys in converted HF weight mapping but missing in HF model initialized from config.json: \n"
f"{set(hf_weights.keys()) - set(hf_model.state_dict().keys())} \n"
)
)
print(
(
f"Keys in HF model initialized from config.json but missing in converted HF weight mapping: \n"
f"{set(hf_model.state_dict().keys()) - set(hf_weights.keys())} \n"
)
)
print(
(
f"It is expected that lm_head.weight is missing from converted HF weight mapping \n"
f"if you have set share_decoder_tokens_head_embeddings=True in your Nemo config. \n"
f"This weight doesn't exist in Nemo, as it is shared with the decoder token embeddings. \n \n"
f"In Huggingface, weights for lm_head.weight and decoder token embeddings are generally duplicated \n"
f"in the state_dict. When missing, the lm_head.weight is automatically initialized from shared decoder \n"
f"token embeddings weights if your HF config.json has tie_word_embeddings=True."
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Nemo T5/UL2 model to Huggingface T5/UL2 model")
parser.add_argument(
"--nemo_model_path",
type=str,
required=True,
help="Path to Nemo T5/UL2 model .ckpt file",
)
parser.add_argument(
"--hf_config_path",
type=str,
required=True,
help="Path to Huggingface T5 config.json",
)
parser.add_argument(
"--hf_model_path",
type=str,
required=False,
help="Path to Huggingface T5 model, local folder or HF hub model",
)
parser.add_argument(
"--output_path",
type=str,
required=True,
help="Folder to save converted Huggingface T5/UL2 model in",
)
parser.add_argument("--hidden_size", type=int, default=768, help="Hidden size of Nemo model")
parser.add_argument("--num_heads", type=int, default=12, help="Number of attention heads in Nemo model")
# Default False if --fix_qkv not specified
parser.add_argument("--fix_qkv", action="store_true", help="Fix QKV weights in converted HF model")
parser.add_argument("--checkpoint_version", type=float, default=2.0, help="Checkpoint version of Nemo model")
parser.add_argument(
"--kv_dim", type=int, default=64, help="Key/Value dimension of Nemo model. Typically hidden_size // num_heads"
)
args = parser.parse_args()
#### Convert Nemo T5/UL2 model to Huggingface T5/UL2 model
model = load_nemo_megatron_model(checkpoint_path=args.nemo_model_path)
nemo_weights = model.state_dict()
hf_weights = convert_nemo_to_hf(
nemo_weights=nemo_weights,
fix_qkv_ordering=args.fix_qkv,
hidden_size=args.hidden_size,
num_heads=args.num_heads,
kv_dim=args.kv_dim,
checkpoint_version=args.checkpoint_version,
)
# We trained with a HF tokenizer, we grab it from the Nemo model.
tokenizer = model.tokenizer.__dict__["tokenizer"]
# We manually create HF config.json that matches architecture of the nemo model
# (or grab one from existing model on HF Hub and modify where necessary).
# See example config.json
config = T5Config.from_json_file(args.hf_config_path)
# Save config
config.save_pretrained(args.output_path)
print(f"Saved config to {os.path.join(args.output_path, 'config.json')}")
# Save tokenizer
tokenizer.save_pretrained(args.output_path)
print(f"Saved tokenizer to {os.path.join(args.output_path, 'tokenizer.json')}")
# Save the converted weights to a file
torch.save(hf_weights, os.path.join(args.output_path, "pytorch_model.bin"))
print(f"Saved converted weights to {os.path.join(args.output_path, 'pytorch_model.bin')}")
# Sanity check
compare_weights_hf_nemo(model, hf_weights, hf_config_path=args.hf_config_path)
|