File size: 17,805 Bytes
0fd282e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script generates a NeMo-Megatron compatible `.nemo` file for a Huggingface T5-v1_1 model.
List of Huggingface models that this script can covert:
1. google/t5-v1_1-small
2. google/t5-v1_1-base
3. google/t5-v1_1-large
4. google/t5-v1_1-xl
5. google/t5-v1_1-xxl
6. google/mt5-small
7. google/mt5-base
8. google/mt5-large
9. google/mt5-xl
10. google/mt5-xxl
11. google/ul2
13. bigscience/T0pp
14. google/t5-small-lm-adapt
15. google/t5-base-lm-adapt
16. google/t5-large-lm-adapt
17. google/t5-xl-lm-adapt
18. google/t5-xxl-lm-adapt
19. google/flan-t5-small
20. google/flan-t5-base
21. google/flan-t5-large
22. google/flan-t5-xl
23. google/flan-t5-xxl
Use instructions:
python hf_t5-v1_1_to_nemo.py \
--hf_model_name bigscience/T0pp \
--nemo_state_dict /path/to/nemo_state_dict.pt \
--nemo_file_path /path/to/nemo_file.nemo
"""
import collections
import os
import tempfile
from argparse import ArgumentParser
import torch
from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning import Trainer
from transformers import AutoTokenizer, T5ForConditionalGeneration
from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector
try:
import accelerate
except ImportError:
raise ImportError("Please install accelerate package via `pip install accelerate` to use this script.")
def convert_weights(hf_model, nemo_state_dict_path):
if hf_model == "google/ul2":
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
hf_model = T5ForConditionalGeneration.from_pretrained(hf_model, low_cpu_mem_usage=True, torch_dtype=torch_dtype)
hf_model_config = hf_model.config
with tempfile.TemporaryDirectory() as tmp:
torch.save(hf_model.state_dict(), os.path.join(tmp, "model.pt"))
hf_weights = torch.load(os.path.join(tmp, "model.pt"))
nemo_weights = collections.OrderedDict()
print(f"Found {len(hf_weights.keys())} keys in the checkpoint")
def _get_model_type_block_layer(k):
if k.startswith("encoder"):
model_type = "encoder"
elif k.startswith("decoder"):
model_type = "decoder"
else:
raise ValueError(f"Unknown model type for {k}")
return model_type, int(k.split(".")[2]), int(k.split(".")[4])
for k, v in hf_weights.items():
#################################################
###### Enc-Dec Embeddings and Output Layer ######
#################################################
# Tied decoder embedding and decoder output layer.
if k == "shared.weight":
pass
elif k == "lm_head.weight":
nemo_weights["enc_dec_model.tokens_head.weight"] = v
print(
f"Mapped {k} to enc_dec_model.decoder_embedding.word_embeddings.weight and enc_dec_model.tokens_head.weight"
)
# Decoder embeddings
elif k == "decoder.embed_tokens.weight":
nemo_weights["enc_dec_model.decoder_embedding.word_embeddings.weight"] = v
elif k == "encoder.embed_tokens.weight":
nemo_weights["enc_dec_model.encoder_embedding.word_embeddings.weight"] = v
print(f"Mapped {k} to enc_dec_model.encoder_embedding.word_embeddings.weight")
#################################################
################# RPE Weights ###################
#################################################
elif k == "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight":
nemo_weights["enc_dec_model.encoder_relative_position_embedding.relative_position_embedding.weight"] = v
print(
f"Mapped {k} to enc_dec_model.encoder_relative_position_embedding.relative_position_embedding.weight"
)
elif k == "decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight":
nemo_weights["enc_dec_model.decoder_relative_position_embedding.relative_position_embedding.weight"] = v
print(
f"Mapped {k} to enc_dec_model.decoder_relative_position_embedding.relative_position_embedding.weight"
)
# Block in HF corresponds to layer in NeMo.
# Layer in HF does not correspond to anything in NeMo. Layer 0 is self attn, layer 1 is cross-attn.
#################################################
############### Attention Layers ################
#################################################
# Self-Attention
# Q, k, V in NeMo-Megatron is bundled into a single matrix.
elif "SelfAttention.q.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
k_weight = hf_weights[k.replace("q.weight", "k.weight")]
v_weight = hf_weights[k.replace("q.weight", "v.weight")]
concat_weights = torch.cat([v, k_weight, v_weight], dim=0)
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.query_key_value.weight"
] = concat_weights
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.query_key_value.weight"
)
# We can skip processing of k, v weights since we already concat them into qkv above.
elif "SelfAttention.k.weight" in k or "SelfAttention.v.weight" in k:
pass
# Output self-attn matrix.
elif "SelfAttention.o.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
block_number = int(k.split(".")[2]) # Block in HF corresponds to layer in NeMo.
layer_number = int(
k.split(".")[4]
) # Layer in HF does not correspond to anything in NeMo. Layer 0 is self attn, layer 1 is cross-attn.
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.dense.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.dense.weight"
)
# Cross-Attention projection matrices are merged into K, V matrices in NeMo-Megatron
elif "EncDecAttention.k.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
v_weight = hf_weights[k.replace("k.weight", "v.weight")]
concat_weights = torch.cat([v, v_weight], dim=0)
nemo_weights[
f"enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.key_value.weight"
] = concat_weights
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.key_value.weight"
)
# We can skip processing of v weights since we already concat them with k above.
elif "EncDecAttention.v.weight" in k:
pass
# Cross-Attention Q matrix is separate in NeMo-Megatron
elif "EncDecAttention.q.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
nemo_weights[
f"enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.query.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.query.weight"
)
# Cross-Attention Q matrix is separate in NeMo-Megatron
elif "EncDecAttention.o.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
nemo_weights[
f"enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.dense.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.dense.weight"
)
#################################################
#################$ FFN Layers ###################
#################################################
elif "DenseReluDense.wi_0.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h.weight"
)
elif "DenseReluDense.wi_1.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h_2.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h_2.weight"
)
elif "DenseReluDense.wo.weight" in k:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_4h_to_h.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_4h_to_h.weight"
)
#################################################
#################$ LayerNorm ####################
#################################################
elif "layer_norm" in k:
if "final" in k:
model_type = "encoder" if k.startswith("encoder") else "decoder"
nemo_weights[f"enc_dec_model.enc_dec_model.{model_type}.model.final_layernorm.weight"] = v
print(f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.final_layernorm.weight")
else:
model_type, block_number, layer_number = _get_model_type_block_layer(k)
if layer_number == 0 and model_type == "encoder":
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
)
elif layer_number == 1 and model_type == "encoder":
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
)
elif layer_number == 0 and model_type == "decoder":
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
)
elif layer_number == 1 and model_type == "decoder":
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
)
elif layer_number == 2 and model_type == "decoder":
nemo_weights[
f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_inter_attention_layernorm.weight"
] = v
print(
f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_inter_attention_layernorm.weight"
)
else:
raise ValueError("Unknown layer_norm key: {}".format(k))
else:
raise ValueError(f"Unknown key: {k}")
torch.save(nemo_weights, nemo_state_dict_path)
print("Saved weights to {}".format(nemo_state_dict_path))
return hf_model_config
def package_into_nemo_file(
state_dict_path, base_yaml_config, hf_model_config, nemo_file_path, hf_model_name, megatron_amp_O2
):
"""
Packages the state dict, config file and tokenizer into a `.nemo` file.
"""
trainer = Trainer(devices=1, strategy=NLPDDPStrategy(), accelerator="cpu", precision=32)
base_cfg = OmegaConf.load(base_yaml_config)
if hf_model_config.dense_act_fn == "silu":
act_fn = "swiglu"
elif hf_model_config.dense_act_fn == "gelu_new":
act_fn = "geglu"
# FLAN-T5 models have things configured this way.
elif hf_model_config.dense_act_fn == "gelu" and hf_model_config.is_gated_act:
act_fn = "geglu"
else:
raise ValueError(f"Unknown dense_act_fn: {hf_model_config.dense_act_fn}")
with open_dict(base_cfg):
base_cfg.encoder.num_layers = hf_model_config.num_layers
base_cfg.encoder.hidden_size = hf_model_config.d_model
base_cfg.encoder.ffn_hidden_size = hf_model_config.d_ff
base_cfg.encoder.kv_channels = hf_model_config.d_kv
base_cfg.encoder.num_attention_heads = hf_model_config.num_heads
base_cfg.encoder.activation = act_fn
base_cfg.encoder.relative_attention_num_buckets = hf_model_config.relative_attention_num_buckets
base_cfg.decoder.num_layers = hf_model_config.num_decoder_layers
base_cfg.decoder.hidden_size = hf_model_config.d_model
base_cfg.decoder.ffn_hidden_size = hf_model_config.d_ff
base_cfg.decoder.kv_channels = hf_model_config.d_kv
base_cfg.decoder.num_attention_heads = hf_model_config.num_heads
base_cfg.decoder.activation = act_fn
base_cfg.decoder.relative_attention_num_buckets = hf_model_config.relative_attention_num_buckets
base_cfg.megatron_amp_O2 = megatron_amp_O2
with tempfile.TemporaryDirectory() as tmp:
tokenizer = AutoTokenizer.from_pretrained(hf_model_name)
tokenizer_path = tokenizer.save_vocabulary(tmp)[0]
base_cfg.tokenizer.model = tokenizer_path
model = MegatronT5Model(base_cfg, trainer).to("cpu")
model._save_restore_connector = NLPSaveRestoreConnector()
state_dict = torch.load(state_dict_path)
if megatron_amp_O2:
new_state_dict = {}
for key in state_dict.keys():
new_key = key.replace("model.", "model.module.", 1)
new_state_dict[new_key] = state_dict[key]
state_dict = new_state_dict
model.load_state_dict(state_dict)
model.save_to(nemo_file_path)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--hf_model_name",
type=str,
required=True,
help="Valid Huggingface T5v1_1 model name ex: google/t5-v1_1-large or google/ul2. Example something that can be loaded with T5ForConditionalGeneration.from_pretrained()",
)
parser.add_argument(
"--nemo_state_dict_path",
type=str,
required=True,
help="Path to write the intermediate nemo state dict file ex: /path/to/nemo_state_dict.pt",
)
parser.add_argument(
"--nemo_file_path",
type=str,
required=True,
help="Path to write the converted .nemo file ex: /path/to/t5_base_converted_to_nemo.nemo",
)
parser.add_argument(
"--base_yaml_config",
type=str,
default="hf_t5v1_1_base_config.yaml",
help="Path to a base yaml config that we edit based on the provided model.",
)
parser.add_argument(
"--megatron_amp_O2",
action="store_true",
help="Whether to store O2 weights. This may be useful for models like ul2 where only pre-trained half precision weights were released.",
)
args = parser.parse_args()
if not os.path.exists(args.base_yaml_config):
raise FileNotFoundError(f"Base yaml config file {args.base_yaml_config} does not exist.")
hf_model_config = convert_weights(args.hf_model_name, args.nemo_state_dict_path)
package_into_nemo_file(
state_dict_path=args.nemo_state_dict_path,
base_yaml_config=args.base_yaml_config,
hf_model_config=hf_model_config,
nemo_file_path=args.nemo_file_path,
hf_model_name=args.hf_model_name,
megatron_amp_O2=args.megatron_amp_O2,
)
|