File size: 17,805 Bytes
0fd282e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This script generates a NeMo-Megatron compatible `.nemo` file for a Huggingface T5-v1_1 model.
List of Huggingface models that this script can covert:
1. google/t5-v1_1-small
2. google/t5-v1_1-base
3. google/t5-v1_1-large
4. google/t5-v1_1-xl
5. google/t5-v1_1-xxl
6. google/mt5-small
7. google/mt5-base
8. google/mt5-large
9. google/mt5-xl
10. google/mt5-xxl
11. google/ul2
13. bigscience/T0pp
14. google/t5-small-lm-adapt
15. google/t5-base-lm-adapt
16. google/t5-large-lm-adapt
17. google/t5-xl-lm-adapt
18. google/t5-xxl-lm-adapt
19. google/flan-t5-small
20. google/flan-t5-base
21. google/flan-t5-large
22. google/flan-t5-xl
23. google/flan-t5-xxl
Use instructions:
python hf_t5-v1_1_to_nemo.py \
    --hf_model_name bigscience/T0pp \
    --nemo_state_dict /path/to/nemo_state_dict.pt \
    --nemo_file_path /path/to/nemo_file.nemo
"""
import collections
import os
import tempfile
from argparse import ArgumentParser

import torch
from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning import Trainer
from transformers import AutoTokenizer, T5ForConditionalGeneration

from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector

try:
    import accelerate
except ImportError:
    raise ImportError("Please install accelerate package via `pip install accelerate` to use this script.")


def convert_weights(hf_model, nemo_state_dict_path):
    if hf_model == "google/ul2":
        torch_dtype = torch.bfloat16
    else:
        torch_dtype = torch.float32
    hf_model = T5ForConditionalGeneration.from_pretrained(hf_model, low_cpu_mem_usage=True, torch_dtype=torch_dtype)
    hf_model_config = hf_model.config
    with tempfile.TemporaryDirectory() as tmp:
        torch.save(hf_model.state_dict(), os.path.join(tmp, "model.pt"))
        hf_weights = torch.load(os.path.join(tmp, "model.pt"))

    nemo_weights = collections.OrderedDict()

    print(f"Found {len(hf_weights.keys())} keys in the checkpoint")

    def _get_model_type_block_layer(k):
        if k.startswith("encoder"):
            model_type = "encoder"
        elif k.startswith("decoder"):
            model_type = "decoder"
        else:
            raise ValueError(f"Unknown model type for {k}")

        return model_type, int(k.split(".")[2]), int(k.split(".")[4])

    for k, v in hf_weights.items():
        #################################################
        ###### Enc-Dec Embeddings and Output Layer ######
        #################################################
        # Tied decoder embedding and decoder output layer.
        if k == "shared.weight":
            pass

        elif k == "lm_head.weight":
            nemo_weights["enc_dec_model.tokens_head.weight"] = v
            print(
                f"Mapped {k} to enc_dec_model.decoder_embedding.word_embeddings.weight and enc_dec_model.tokens_head.weight"
            )

        # Decoder embeddings
        elif k == "decoder.embed_tokens.weight":
            nemo_weights["enc_dec_model.decoder_embedding.word_embeddings.weight"] = v

        elif k == "encoder.embed_tokens.weight":
            nemo_weights["enc_dec_model.encoder_embedding.word_embeddings.weight"] = v
            print(f"Mapped {k} to enc_dec_model.encoder_embedding.word_embeddings.weight")

        #################################################
        ################# RPE Weights ###################
        #################################################

        elif k == "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight":
            nemo_weights["enc_dec_model.encoder_relative_position_embedding.relative_position_embedding.weight"] = v
            print(
                f"Mapped {k} to enc_dec_model.encoder_relative_position_embedding.relative_position_embedding.weight"
            )

        elif k == "decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight":
            nemo_weights["enc_dec_model.decoder_relative_position_embedding.relative_position_embedding.weight"] = v
            print(
                f"Mapped {k} to enc_dec_model.decoder_relative_position_embedding.relative_position_embedding.weight"
            )

        # Block in HF corresponds to layer in NeMo.
        # Layer in HF does not correspond to anything in NeMo. Layer 0 is self attn, layer 1 is cross-attn.

        #################################################
        ############### Attention Layers ################
        #################################################

        # Self-Attention

        # Q, k, V in NeMo-Megatron is bundled into a single matrix.
        elif "SelfAttention.q.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            k_weight = hf_weights[k.replace("q.weight", "k.weight")]
            v_weight = hf_weights[k.replace("q.weight", "v.weight")]
            concat_weights = torch.cat([v, k_weight, v_weight], dim=0)
            nemo_weights[
                f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.query_key_value.weight"
            ] = concat_weights
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.query_key_value.weight"
            )

        # We can skip processing of k, v weights since we already concat them into qkv above.
        elif "SelfAttention.k.weight" in k or "SelfAttention.v.weight" in k:
            pass

        # Output self-attn matrix.
        elif "SelfAttention.o.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            block_number = int(k.split(".")[2])  # Block in HF corresponds to layer in NeMo.
            layer_number = int(
                k.split(".")[4]
            )  # Layer in HF does not correspond to anything in NeMo. Layer 0 is self attn, layer 1 is cross-attn.
            nemo_weights[
                f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.dense.weight"
            ] = v
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.self_attention.dense.weight"
            )

        # Cross-Attention projection matrices are merged into K, V matrices in NeMo-Megatron
        elif "EncDecAttention.k.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            v_weight = hf_weights[k.replace("k.weight", "v.weight")]
            concat_weights = torch.cat([v, v_weight], dim=0)
            nemo_weights[
                f"enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.key_value.weight"
            ] = concat_weights
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.key_value.weight"
            )

        # We can skip processing of v weights since we already concat them with k above.
        elif "EncDecAttention.v.weight" in k:
            pass

        # Cross-Attention Q matrix is separate in NeMo-Megatron
        elif "EncDecAttention.q.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            nemo_weights[
                f"enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.query.weight"
            ] = v
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.query.weight"
            )

        # Cross-Attention Q matrix is separate in NeMo-Megatron
        elif "EncDecAttention.o.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            nemo_weights[
                f"enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.dense.weight"
            ] = v
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.decoder.model.layers.{block_number}.inter_attention.dense.weight"
            )

        #################################################
        #################$ FFN Layers ###################
        #################################################

        elif "DenseReluDense.wi_0.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            nemo_weights[
                f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h.weight"
            ] = v
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h.weight"
            )

        elif "DenseReluDense.wi_1.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            nemo_weights[
                f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h_2.weight"
            ] = v
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_h_to_4h_2.weight"
            )

        elif "DenseReluDense.wo.weight" in k:
            model_type, block_number, layer_number = _get_model_type_block_layer(k)
            nemo_weights[
                f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_4h_to_h.weight"
            ] = v
            print(
                f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.mlp.dense_4h_to_h.weight"
            )

        #################################################
        #################$ LayerNorm ####################
        #################################################

        elif "layer_norm" in k:
            if "final" in k:
                model_type = "encoder" if k.startswith("encoder") else "decoder"
                nemo_weights[f"enc_dec_model.enc_dec_model.{model_type}.model.final_layernorm.weight"] = v
                print(f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.final_layernorm.weight")
            else:
                model_type, block_number, layer_number = _get_model_type_block_layer(k)
                if layer_number == 0 and model_type == "encoder":
                    nemo_weights[
                        f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
                    ] = v
                    print(
                        f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
                    )
                elif layer_number == 1 and model_type == "encoder":
                    nemo_weights[
                        f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
                    ] = v
                    print(
                        f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
                    )
                elif layer_number == 0 and model_type == "decoder":
                    nemo_weights[
                        f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
                    ] = v
                    print(
                        f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.input_layernorm.weight"
                    )
                elif layer_number == 1 and model_type == "decoder":
                    nemo_weights[
                        f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
                    ] = v
                    print(
                        f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_attention_layernorm.weight"
                    )
                elif layer_number == 2 and model_type == "decoder":
                    nemo_weights[
                        f"enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_inter_attention_layernorm.weight"
                    ] = v
                    print(
                        f"Mapped {k} to enc_dec_model.enc_dec_model.{model_type}.model.layers.{block_number}.post_inter_attention_layernorm.weight"
                    )
                else:
                    raise ValueError("Unknown layer_norm key: {}".format(k))
        else:
            raise ValueError(f"Unknown key: {k}")

    torch.save(nemo_weights, nemo_state_dict_path)
    print("Saved weights to {}".format(nemo_state_dict_path))
    return hf_model_config


def package_into_nemo_file(
    state_dict_path, base_yaml_config, hf_model_config, nemo_file_path, hf_model_name, megatron_amp_O2
):
    """
    Packages the state dict, config file and tokenizer into a `.nemo` file.
    """
    trainer = Trainer(devices=1, strategy=NLPDDPStrategy(), accelerator="cpu", precision=32)
    base_cfg = OmegaConf.load(base_yaml_config)
    if hf_model_config.dense_act_fn == "silu":
        act_fn = "swiglu"
    elif hf_model_config.dense_act_fn == "gelu_new":
        act_fn = "geglu"
    # FLAN-T5 models have things configured this way.
    elif hf_model_config.dense_act_fn == "gelu" and hf_model_config.is_gated_act:
        act_fn = "geglu"
    else:
        raise ValueError(f"Unknown dense_act_fn: {hf_model_config.dense_act_fn}")

    with open_dict(base_cfg):
        base_cfg.encoder.num_layers = hf_model_config.num_layers
        base_cfg.encoder.hidden_size = hf_model_config.d_model
        base_cfg.encoder.ffn_hidden_size = hf_model_config.d_ff
        base_cfg.encoder.kv_channels = hf_model_config.d_kv
        base_cfg.encoder.num_attention_heads = hf_model_config.num_heads
        base_cfg.encoder.activation = act_fn
        base_cfg.encoder.relative_attention_num_buckets = hf_model_config.relative_attention_num_buckets

        base_cfg.decoder.num_layers = hf_model_config.num_decoder_layers
        base_cfg.decoder.hidden_size = hf_model_config.d_model
        base_cfg.decoder.ffn_hidden_size = hf_model_config.d_ff
        base_cfg.decoder.kv_channels = hf_model_config.d_kv
        base_cfg.decoder.num_attention_heads = hf_model_config.num_heads
        base_cfg.decoder.activation = act_fn
        base_cfg.decoder.relative_attention_num_buckets = hf_model_config.relative_attention_num_buckets

        base_cfg.megatron_amp_O2 = megatron_amp_O2

    with tempfile.TemporaryDirectory() as tmp:
        tokenizer = AutoTokenizer.from_pretrained(hf_model_name)
        tokenizer_path = tokenizer.save_vocabulary(tmp)[0]
        base_cfg.tokenizer.model = tokenizer_path
        model = MegatronT5Model(base_cfg, trainer).to("cpu")
        model._save_restore_connector = NLPSaveRestoreConnector()
        state_dict = torch.load(state_dict_path)
        if megatron_amp_O2:
            new_state_dict = {}
            for key in state_dict.keys():
                new_key = key.replace("model.", "model.module.", 1)
                new_state_dict[new_key] = state_dict[key]
            state_dict = new_state_dict
        model.load_state_dict(state_dict)
        model.save_to(nemo_file_path)


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument(
        "--hf_model_name",
        type=str,
        required=True,
        help="Valid Huggingface T5v1_1 model name ex: google/t5-v1_1-large or google/ul2. Example something that can be loaded with T5ForConditionalGeneration.from_pretrained()",
    )
    parser.add_argument(
        "--nemo_state_dict_path",
        type=str,
        required=True,
        help="Path to write the intermediate nemo state dict file ex: /path/to/nemo_state_dict.pt",
    )
    parser.add_argument(
        "--nemo_file_path",
        type=str,
        required=True,
        help="Path to write the converted .nemo file ex: /path/to/t5_base_converted_to_nemo.nemo",
    )
    parser.add_argument(
        "--base_yaml_config",
        type=str,
        default="hf_t5v1_1_base_config.yaml",
        help="Path to a base yaml config that we edit based on the provided model.",
    )
    parser.add_argument(
        "--megatron_amp_O2",
        action="store_true",
        help="Whether to store O2 weights. This may be useful for models like ul2 where only pre-trained half precision weights were released.",
    )
    args = parser.parse_args()
    if not os.path.exists(args.base_yaml_config):
        raise FileNotFoundError(f"Base yaml config file {args.base_yaml_config} does not exist.")
    hf_model_config = convert_weights(args.hf_model_name, args.nemo_state_dict_path)
    package_into_nemo_file(
        state_dict_path=args.nemo_state_dict_path,
        base_yaml_config=args.base_yaml_config,
        hf_model_config=hf_model_config,
        nemo_file_path=args.nemo_file_path,
        hf_model_name=args.hf_model_name,
        megatron_amp_O2=args.megatron_amp_O2,
    )