UL2-nemo-conversion / nemo_config /ul2-base-nl36 /megatron.ul2-base-nl36.unigram-64k-pretok-small_data.all-clean.config.yaml
Faton Rekathati
UL2 conversion instructions
0fd282e
raw
history blame
7.55 kB
defaults:
- .@model.encoder: megatron_model_ul2base_config
- .@model.decoder: megatron_model_ul2base_config
name: megatron_ul2
restore_from_path: null # used when starting from a .nemo file
trainer:
devices: 1
num_nodes: 1
accelerator: gpu
precision: 16
logger: False # logger provided by exp_manager
enable_checkpointing: False
replace_sampler_ddp: False
max_epochs: -1 # PTL default. In practice, max_steps will be reached first.
max_steps: 524288 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
log_every_n_steps: 100
val_check_interval: 1000
limit_val_batches: 30
limit_test_batches: 500
accumulate_grad_batches: 1
gradient_clip_val: 1.0
exp_manager:
explicit_log_dir: null
exp_dir: /project/scratch/p200097/nemo_experiments/
name: megatron.ul2-base-nl36.unigram-64k-pretok-small_data.all-clean
create_wandb_logger: False
wandb_logger_kwargs:
project: null
name: null
resume_if_exists: True
resume_ignore_no_checkpoint: True
create_checkpoint_callback: True
checkpoint_callback_params:
monitor: val_loss
save_top_k: 10
mode: min
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel
filename: '${name}--{val_loss:.2f}-{step}-{consumed_samples}'
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}}
model:
# model parallelism
micro_batch_size: 10
# 4 GPUS * 24 nodes = 96 GPUS
# 96 GPUS * 7 micro_batch_size = 672 batch_size
# 672 * 3 = 2016 global_batch_size
global_batch_size: 2080 # will use more micro batches to reach global batch size
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
resume_from_checkpoint: null # manually set the checkpoint file to load from
pipeline_model_parallel_split_rank: 0 # rank at which decoder starts.
# model architecture
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency.
megatron_amp_O2: False # use AMP with O2 style mixed precision instead of native amp on-the-fly weight autocasting.
grad_allreduce_chunk_size_mb: 125
grad_div_ar_fusion: True # Fuse grad division into torch.distributed.all_reduce
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
seq_length: 512
max_position_embeddings: ${.seq_length}
tokenizer:
library: 'huggingface'
type: 'KBLab/unigram-64k-pretok-small_data-tokenizer'
model: null
vocab_file: null
merge_file: null
num_sentinel_tokens: 256
sentencepiece_legacy: True # Legacy=True allows you to add special tokens to sentencepiece tokenizers.
# tokenizer:
# library: 'megatron'
# type: 'BertWordPieceCase'
# model: null
# vocab_file: null
# merge_file: null
# num_sentinel_tokens: 100
# sentencepiece_legacy: True # Legacy=True allows you to add special tokens to sentencepiece tokenizers.
# weight init
embedding_init_method_std: 0.02 # Standard deviation of the zero mean normal distribution used for weight initialization.')
# embedding dropout
embedding_dropout: 0.1
# embedding sharing
share_token_embeddings: True # If True share encoder/decoder embeddings
share_decoder_tokens_head_embeddings: True # If True share decoder embeddings and decoder projection to logits
# token head
tokens_head_bias: False
# precision
native_amp_init_scale: 4294967296 # 2 ** 32
native_amp_growth_interval: 1000
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16
# miscellaneous
seed: 1234
use_cpu_initialization: False # Init weights on the CPU (slow for large models)
apex_transformer_log_level: 30 # Python logging level displays logs with severity greater than or equal to this
data:
# Path to data must be specified by the user.
# can override from the CLI: "model.data.data_prefix=[.5,/raid/data/pile/my-t5_00_text_document,.5,/raid/data/pile/my-t5_01_text_document]",
# Or see example below:
# data_prefix:
# - .5
# - /raid/data/pile/my-t5_00_text_document
# - .5
# - /raid/data/pile/my-t5_01_text_document
data_prefix:
- 0.005
- /project/scratch/p200097/data/unigram-64k-pretok-small_data/wikipedia-unigram-64k-pretok-small_data_text_sentence
- 0.035
- /project/scratch/p200097/data/unigram-64k-pretok-small_data/edepos_html-unigram-64k-pretok-small_data_text_sentence
- 0.030
- /project/scratch/p200097/data/unigram-64k-pretok-small_data/oscar-unigram-64k-pretok-small_data_text_sentence
- 0.105
- /project/scratch/p200097/data/unigram-64k-pretok-small_data/kw3-2017-unigram-64k-pretok-small_data_text_sentence
- 0.177
- /project/scratch/p200097/data/unigram-64k-pretok-small_data/issues-unigram-64k-pretok-small_data_text_sentence
- 0.648
- /project/scratch/p200097/data/unigram-64k-pretok-small_data/mc4-unigram-64k-pretok-small_data_text_sentence
index_mapping_dir: /project/scratch/p200097/data/unigram-64k-pretok-small_data/npy_files_ul2/ # path to save index mapping .npy files, by default will save in the same location as data_prefix
data_impl: mmap
# data_impl_kwargs: # currently used only for text_mmap, csv_mmap (should be data_impl dependant)
# # defaults for text_memmap
# newline_int: 10 # byte-value of newline (Use ord('\n') to get value)
# header_lines: 0 # skip first N header lines
# workers: null # number of workers when creating missing index files (null defaults to cpu_num // 2)
# sort_dataset_paths: False # if True datasets will be sorted by name
# # defaults for csv_memmap
# newline_int: 10 # byte-value of newline
# header_lines: 1 # skip first N header lines
# workers: null # number of workers when creating missing index files (null defaults to cpu_num // 2)
# sort_dataset_paths: False # if True datasets will be sorted by name
# data_col: 1 # column to use for data
# data_sep: ',' # string to split text into columns
splits_string: 996,2,2
seq_length: ${model.seq_length}
seq_length_dec: ${model.seq_length}
skip_warmup: True
num_workers: 32
dataloader_type: single # cyclic
masked_lm_prob: 0.15
extreme_masked_lm_prob: 0.5
dataset_type: 'ul2'
short_seq_prob: 0.0
max_ngram_size: 10
extreme_max_ngram_size: 128
extreme_min_ngram_size: 32
extreme_mean_ngram_size: 64
ngram_span_length_distribution: 'geometric'
extreme_ngram_span_length_distribution: 'truncated_normal'
prefix_lm_pivot_mean: 0.25
mean_ngram_size: 3
permutation: False
whole_word_masking: True
favor_longer_ngrams: False
respect_document_boundaries: True # If true, a single training exampl cannot cross document boundaries, increasing the fraction of <pad> tokens within a batch.
optim:
name: fused_adam
lr: 0.001
weight_decay: 0.01
betas:
- 0.9
- 0.999
eps: 1e-8
sched:
name: CosineAnnealing
warmup_steps: 1600
constant_steps: 30000 #40000
min_lr: 5e-6
# optim:
# name: fused_adam
# lr: 0.0001
# betas:
# - 0.9
# - 0.999
# eps: 1e-8
# weight_decay: 0.01
# sched:
# name: WarmupAnnealing
# min_lr: 0.00001
# last_epoch: -1
# warmup_ratio: 0.005