|
import torch |
|
from transformers import AutoTokenizer, T5ForConditionalGeneration, T5Tokenizer |
|
from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model |
|
from nemo.collections.nlp.data.language_modeling.megatron.ul2_dataset import UL2Dataset |
|
from pytorch_lightning.trainer.trainer import Trainer |
|
|
|
|
|
def load_nemo_megatron_model(checkpoint_path, devices=1, num_nodes=1, accelerator="gpu"): |
|
trainer = Trainer(devices=devices, num_nodes=num_nodes, accelerator=accelerator) |
|
model = MegatronT5Model.load_from_checkpoint(checkpoint_path, trainer=trainer) |
|
|
|
return model |
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ul2-base-nl36-swedish") |
|
model = T5ForConditionalGeneration.from_pretrained("ul2-base-nl36-swedish") |
|
|
|
|
|
input_ids = tokenizer( |
|
"<extra_id_r> Hunden bet mannen i <extra_id_0>", return_tensors="pt", return_token_type_ids=False |
|
) |
|
|
|
with torch.no_grad(): |
|
outputs_hf = model( |
|
input_ids=input_ids.input_ids, |
|
attention_mask=input_ids.attention_mask, |
|
decoder_input_ids=input_ids.input_ids, |
|
decoder_attention_mask=input_ids.attention_mask, |
|
) |
|
|
|
|
|
|
|
output_tokens_hf = outputs_hf[0].argmax(dim=-1) |
|
|
|
|
|
model_nemo = load_nemo_megatron_model("nemo_checkpoints/megatron_ul2--val_loss=2.54-step=7000-consumed_samples=14557920.0.ckpt") |
|
model_nemo.eval() |
|
|
|
tokenizer_nemo = model_nemo.tokenizer.tokenizer |
|
input_ids_nemo = tokenizer_nemo("<extra_id_r> Hunden bet mannen i <extra_id_0>", return_tensors="pt").to("cuda") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs_nemo = model_nemo( |
|
encoder_input_ids=input_ids_nemo.input_ids, |
|
decoder_input_ids=input_ids_nemo.input_ids, |
|
encoder_attn_mask=input_ids_nemo.attention_mask, |
|
decoder_attn_mask=input_ids_nemo.attention_mask, |
|
) |
|
|
|
output_tokens = outputs_nemo.argmax(dim=-1) |
|
|
|
|
|
|
|
print(f"Nemo logits: {outputs_nemo[0]}") |
|
print(f"Huggingface logits: {outputs_hf[0]}") |
|
print(f"Are logits equal: {torch.allclose(outputs_nemo[0], outputs_hf[0].to('cuda'))}") |
|
|
|
|
|
print(f"Huggingface output: {tokenizer.batch_decode(output_tokens_hf)}") |
|
print(f"Nemo output: {tokenizer_nemo.batch_decode(output_tokens)}") |