Update README.md
Browse files
README.md
CHANGED
@@ -15,9 +15,11 @@ datasets:
|
|
15 |
- SEACrowd/indolem_ntp
|
16 |
- khalidalt/tydiqa-goldp
|
17 |
- SEACrowd/facqa
|
|
|
|
|
18 |
---
|
19 |
|
20 |
-
# LazarusNLP/all-indobert-base
|
21 |
|
22 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
23 |
|
@@ -37,7 +39,7 @@ Then you can use the model like this:
|
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
39 |
|
40 |
-
model = SentenceTransformer('LazarusNLP/all-indobert-base
|
41 |
embeddings = model.encode(sentences)
|
42 |
print(embeddings)
|
43 |
```
|
@@ -63,8 +65,8 @@ def mean_pooling(model_output, attention_mask):
|
|
63 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
64 |
|
65 |
# Load model from HuggingFace Hub
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indobert-base
|
67 |
-
model = AutoModel.from_pretrained('LazarusNLP/all-indobert-base
|
68 |
|
69 |
# Tokenize sentences
|
70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -86,7 +88,7 @@ print(sentence_embeddings)
|
|
86 |
|
87 |
<!--- Describe how your model was evaluated -->
|
88 |
|
89 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-indobert-base
|
90 |
|
91 |
|
92 |
## Training
|
@@ -96,7 +98,7 @@ The model was trained with the parameters:
|
|
96 |
|
97 |
`MultiDatasetDataLoader.MultiDatasetDataLoader` of length 352 with parameters:
|
98 |
```
|
99 |
-
{'
|
100 |
```
|
101 |
|
102 |
**Loss**:
|
|
|
15 |
- SEACrowd/indolem_ntp
|
16 |
- khalidalt/tydiqa-goldp
|
17 |
- SEACrowd/facqa
|
18 |
+
language:
|
19 |
+
- ind
|
20 |
---
|
21 |
|
22 |
+
# LazarusNLP/all-indobert-base
|
23 |
|
24 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
25 |
|
|
|
39 |
from sentence_transformers import SentenceTransformer
|
40 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
41 |
|
42 |
+
model = SentenceTransformer('LazarusNLP/all-indobert-base')
|
43 |
embeddings = model.encode(sentences)
|
44 |
print(embeddings)
|
45 |
```
|
|
|
65 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
66 |
|
67 |
# Load model from HuggingFace Hub
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indobert-base')
|
69 |
+
model = AutoModel.from_pretrained('LazarusNLP/all-indobert-base')
|
70 |
|
71 |
# Tokenize sentences
|
72 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
88 |
|
89 |
<!--- Describe how your model was evaluated -->
|
90 |
|
91 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-indobert-base)
|
92 |
|
93 |
|
94 |
## Training
|
|
|
98 |
|
99 |
`MultiDatasetDataLoader.MultiDatasetDataLoader` of length 352 with parameters:
|
100 |
```
|
101 |
+
{'batch_size_pairs': 384, 'batch_size_triplets': 256}
|
102 |
```
|
103 |
|
104 |
**Loss**:
|