w11wo commited on
Commit
9d0e4ed
1 Parent(s): e4bb9e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -15,9 +15,11 @@ datasets:
15
  - SEACrowd/indolem_ntp
16
  - khalidalt/tydiqa-goldp
17
  - SEACrowd/facqa
 
 
18
  ---
19
 
20
- # LazarusNLP/all-indobert-base-v2
21
 
22
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
23
 
@@ -37,7 +39,7 @@ Then you can use the model like this:
37
  from sentence_transformers import SentenceTransformer
38
  sentences = ["This is an example sentence", "Each sentence is converted"]
39
 
40
- model = SentenceTransformer('LazarusNLP/all-indobert-base-v2')
41
  embeddings = model.encode(sentences)
42
  print(embeddings)
43
  ```
@@ -63,8 +65,8 @@ def mean_pooling(model_output, attention_mask):
63
  sentences = ['This is an example sentence', 'Each sentence is converted']
64
 
65
  # Load model from HuggingFace Hub
66
- tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indobert-base-v2')
67
- model = AutoModel.from_pretrained('LazarusNLP/all-indobert-base-v2')
68
 
69
  # Tokenize sentences
70
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -86,7 +88,7 @@ print(sentence_embeddings)
86
 
87
  <!--- Describe how your model was evaluated -->
88
 
89
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-indobert-base-v2)
90
 
91
 
92
  ## Training
@@ -96,7 +98,7 @@ The model was trained with the parameters:
96
 
97
  `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 352 with parameters:
98
  ```
99
- {'batch_size': 'unknown'}
100
  ```
101
 
102
  **Loss**:
 
15
  - SEACrowd/indolem_ntp
16
  - khalidalt/tydiqa-goldp
17
  - SEACrowd/facqa
18
+ language:
19
+ - ind
20
  ---
21
 
22
+ # LazarusNLP/all-indobert-base
23
 
24
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
25
 
 
39
  from sentence_transformers import SentenceTransformer
40
  sentences = ["This is an example sentence", "Each sentence is converted"]
41
 
42
+ model = SentenceTransformer('LazarusNLP/all-indobert-base')
43
  embeddings = model.encode(sentences)
44
  print(embeddings)
45
  ```
 
65
  sentences = ['This is an example sentence', 'Each sentence is converted']
66
 
67
  # Load model from HuggingFace Hub
68
+ tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indobert-base')
69
+ model = AutoModel.from_pretrained('LazarusNLP/all-indobert-base')
70
 
71
  # Tokenize sentences
72
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
88
 
89
  <!--- Describe how your model was evaluated -->
90
 
91
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-indobert-base)
92
 
93
 
94
  ## Training
 
98
 
99
  `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 352 with parameters:
100
  ```
101
+ {'batch_size_pairs': 384, 'batch_size_triplets': 256}
102
  ```
103
 
104
  **Loss**: