update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
@@ -15,11 +14,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# KcELECTRA-small-v2022-finetuned-in-vehicle
|
17 |
|
18 |
-
This model
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Accuracy: 0.
|
22 |
-
- F1: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,62 +43,22 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- num_epochs:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
| 1.7755 | 11.0 | 418 | 1.6402 | 0.7233 | 0.6891 |
|
64 |
-
| 1.6873 | 12.0 | 456 | 1.5496 | 0.81 | 0.7774 |
|
65 |
-
| 1.5828 | 13.0 | 494 | 1.4681 | 0.8433 | 0.8089 |
|
66 |
-
| 1.5222 | 14.0 | 532 | 1.3870 | 0.84 | 0.8038 |
|
67 |
-
| 1.4397 | 15.0 | 570 | 1.3148 | 0.88 | 0.8554 |
|
68 |
-
| 1.3673 | 16.0 | 608 | 1.2461 | 0.89 | 0.8705 |
|
69 |
-
| 1.3047 | 17.0 | 646 | 1.1801 | 0.91 | 0.8903 |
|
70 |
-
| 1.2232 | 18.0 | 684 | 1.1209 | 0.9033 | 0.8844 |
|
71 |
-
| 1.1661 | 19.0 | 722 | 1.0618 | 0.9 | 0.8817 |
|
72 |
-
| 1.1104 | 20.0 | 760 | 1.0207 | 0.89 | 0.8660 |
|
73 |
-
| 1.0572 | 21.0 | 798 | 0.9679 | 0.8933 | 0.8725 |
|
74 |
-
| 1.0191 | 22.0 | 836 | 0.9243 | 0.8933 | 0.8722 |
|
75 |
-
| 0.9548 | 23.0 | 874 | 0.8850 | 0.8967 | 0.8757 |
|
76 |
-
| 0.9364 | 24.0 | 912 | 0.8429 | 0.9 | 0.8790 |
|
77 |
-
| 0.871 | 25.0 | 950 | 0.8094 | 0.8933 | 0.8724 |
|
78 |
-
| 0.8629 | 26.0 | 988 | 0.7773 | 0.8967 | 0.8746 |
|
79 |
-
| 0.7992 | 27.0 | 1026 | 0.7540 | 0.8933 | 0.8735 |
|
80 |
-
| 0.7948 | 28.0 | 1064 | 0.7234 | 0.8933 | 0.8704 |
|
81 |
-
| 0.7455 | 29.0 | 1102 | 0.6967 | 0.8967 | 0.8749 |
|
82 |
-
| 0.7236 | 30.0 | 1140 | 0.6760 | 0.91 | 0.8881 |
|
83 |
-
| 0.6905 | 31.0 | 1178 | 0.6519 | 0.9033 | 0.8832 |
|
84 |
-
| 0.6857 | 32.0 | 1216 | 0.6396 | 0.9133 | 0.8944 |
|
85 |
-
| 0.6526 | 33.0 | 1254 | 0.6155 | 0.9167 | 0.8963 |
|
86 |
-
| 0.6294 | 34.0 | 1292 | 0.6025 | 0.9033 | 0.8835 |
|
87 |
-
| 0.6179 | 35.0 | 1330 | 0.5909 | 0.9167 | 0.8970 |
|
88 |
-
| 0.6022 | 36.0 | 1368 | 0.5757 | 0.9133 | 0.8934 |
|
89 |
-
| 0.5753 | 37.0 | 1406 | 0.5610 | 0.92 | 0.8999 |
|
90 |
-
| 0.561 | 38.0 | 1444 | 0.5536 | 0.9167 | 0.8970 |
|
91 |
-
| 0.553 | 39.0 | 1482 | 0.5417 | 0.92 | 0.8998 |
|
92 |
-
| 0.5395 | 40.0 | 1520 | 0.5367 | 0.92 | 0.9018 |
|
93 |
-
| 0.5402 | 41.0 | 1558 | 0.5276 | 0.92 | 0.9018 |
|
94 |
-
| 0.5266 | 42.0 | 1596 | 0.5238 | 0.92 | 0.9010 |
|
95 |
-
| 0.5178 | 43.0 | 1634 | 0.5182 | 0.92 | 0.9018 |
|
96 |
-
| 0.52 | 44.0 | 1672 | 0.5129 | 0.92 | 0.9010 |
|
97 |
-
| 0.495 | 45.0 | 1710 | 0.5069 | 0.9167 | 0.8981 |
|
98 |
-
| 0.5124 | 46.0 | 1748 | 0.5054 | 0.9167 | 0.8981 |
|
99 |
-
| 0.5034 | 47.0 | 1786 | 0.5038 | 0.92 | 0.9018 |
|
100 |
-
| 0.5108 | 48.0 | 1824 | 0.5020 | 0.92 | 0.9018 |
|
101 |
-
| 0.483 | 49.0 | 1862 | 0.5016 | 0.92 | 0.9010 |
|
102 |
-
| 0.4974 | 50.0 | 1900 | 0.5014 | 0.92 | 0.9010 |
|
103 |
|
104 |
|
105 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
|
|
14 |
|
15 |
# KcELECTRA-small-v2022-finetuned-in-vehicle
|
16 |
|
17 |
+
This model was trained from scratch on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3712
|
20 |
+
- Accuracy: 0.9453
|
21 |
+
- F1: 0.9325
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 10
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
52 |
+
| 0.4773 | 1.0 | 33 | 0.4666 | 0.9171 | 0.8976 |
|
53 |
+
| 0.4439 | 2.0 | 66 | 0.4404 | 0.9204 | 0.9011 |
|
54 |
+
| 0.438 | 3.0 | 99 | 0.4226 | 0.9270 | 0.9119 |
|
55 |
+
| 0.4065 | 4.0 | 132 | 0.4094 | 0.9287 | 0.9141 |
|
56 |
+
| 0.3882 | 5.0 | 165 | 0.3975 | 0.9287 | 0.9151 |
|
57 |
+
| 0.368 | 6.0 | 198 | 0.3886 | 0.9403 | 0.9279 |
|
58 |
+
| 0.3531 | 7.0 | 231 | 0.3812 | 0.9436 | 0.9312 |
|
59 |
+
| 0.3696 | 8.0 | 264 | 0.3762 | 0.9403 | 0.9276 |
|
60 |
+
| 0.3542 | 9.0 | 297 | 0.3718 | 0.9453 | 0.9329 |
|
61 |
+
| 0.3379 | 10.0 | 330 | 0.3712 | 0.9453 | 0.9325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|