update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
@@ -15,11 +14,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# KcELECTRA-small-v2022-finetuned-in-vehicle
|
17 |
|
18 |
-
This model
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
-
- Accuracy: 0.
|
22 |
-
- F1: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,22 +43,112 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- num_epochs:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
53 |
-
| 2.
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
| 2.
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
|
|
14 |
|
15 |
# KcELECTRA-small-v2022-finetuned-in-vehicle
|
16 |
|
17 |
+
This model was trained from scratch on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3512
|
20 |
+
- Accuracy: 0.9267
|
21 |
+
- F1: 0.9181
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 100
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
52 |
+
| 2.257 | 1.0 | 38 | 2.1802 | 0.41 | 0.2474 |
|
53 |
+
| 2.1748 | 2.0 | 76 | 2.0939 | 0.42 | 0.2779 |
|
54 |
+
| 2.1017 | 3.0 | 114 | 2.0072 | 0.42 | 0.2938 |
|
55 |
+
| 2.0129 | 4.0 | 152 | 1.9214 | 0.4267 | 0.3036 |
|
56 |
+
| 1.9357 | 5.0 | 190 | 1.8354 | 0.44 | 0.3233 |
|
57 |
+
| 1.8433 | 6.0 | 228 | 1.7492 | 0.5133 | 0.4003 |
|
58 |
+
| 1.7616 | 7.0 | 266 | 1.6635 | 0.5833 | 0.4799 |
|
59 |
+
| 1.6779 | 8.0 | 304 | 1.5743 | 0.57 | 0.4758 |
|
60 |
+
| 1.602 | 9.0 | 342 | 1.4930 | 0.65 | 0.5778 |
|
61 |
+
| 1.5121 | 10.0 | 380 | 1.4169 | 0.7 | 0.6336 |
|
62 |
+
| 1.4362 | 11.0 | 418 | 1.3440 | 0.7267 | 0.6620 |
|
63 |
+
| 1.3681 | 12.0 | 456 | 1.2720 | 0.73 | 0.6702 |
|
64 |
+
| 1.2934 | 13.0 | 494 | 1.2106 | 0.7333 | 0.6734 |
|
65 |
+
| 1.2141 | 14.0 | 532 | 1.1430 | 0.7467 | 0.6874 |
|
66 |
+
| 1.1599 | 15.0 | 570 | 1.0846 | 0.7533 | 0.6975 |
|
67 |
+
| 1.1105 | 16.0 | 608 | 1.0311 | 0.76 | 0.7054 |
|
68 |
+
| 1.0367 | 17.0 | 646 | 0.9794 | 0.7633 | 0.7120 |
|
69 |
+
| 0.9879 | 18.0 | 684 | 0.9321 | 0.7767 | 0.7247 |
|
70 |
+
| 0.9396 | 19.0 | 722 | 0.8882 | 0.7733 | 0.7204 |
|
71 |
+
| 0.8891 | 20.0 | 760 | 0.8504 | 0.7967 | 0.7496 |
|
72 |
+
| 0.8522 | 21.0 | 798 | 0.8135 | 0.8 | 0.7531 |
|
73 |
+
| 0.797 | 22.0 | 836 | 0.7806 | 0.8 | 0.7540 |
|
74 |
+
| 0.7532 | 23.0 | 874 | 0.7495 | 0.8233 | 0.7857 |
|
75 |
+
| 0.7381 | 24.0 | 912 | 0.7233 | 0.8233 | 0.7895 |
|
76 |
+
| 0.6876 | 25.0 | 950 | 0.6939 | 0.8333 | 0.8011 |
|
77 |
+
| 0.672 | 26.0 | 988 | 0.6655 | 0.8367 | 0.8028 |
|
78 |
+
| 0.6318 | 27.0 | 1026 | 0.6441 | 0.8433 | 0.8005 |
|
79 |
+
| 0.6093 | 28.0 | 1064 | 0.6241 | 0.85 | 0.8116 |
|
80 |
+
| 0.5908 | 29.0 | 1102 | 0.6047 | 0.8533 | 0.8150 |
|
81 |
+
| 0.5509 | 30.0 | 1140 | 0.5900 | 0.86 | 0.8244 |
|
82 |
+
| 0.5316 | 31.0 | 1178 | 0.5696 | 0.8633 | 0.8267 |
|
83 |
+
| 0.506 | 32.0 | 1216 | 0.5611 | 0.87 | 0.8433 |
|
84 |
+
| 0.4912 | 33.0 | 1254 | 0.5352 | 0.8733 | 0.8464 |
|
85 |
+
| 0.4707 | 34.0 | 1292 | 0.5234 | 0.8967 | 0.8711 |
|
86 |
+
| 0.4527 | 35.0 | 1330 | 0.5121 | 0.8933 | 0.8684 |
|
87 |
+
| 0.4348 | 36.0 | 1368 | 0.4920 | 0.9033 | 0.8848 |
|
88 |
+
| 0.3974 | 37.0 | 1406 | 0.4881 | 0.9033 | 0.8841 |
|
89 |
+
| 0.3817 | 38.0 | 1444 | 0.4744 | 0.91 | 0.8953 |
|
90 |
+
| 0.3665 | 39.0 | 1482 | 0.4664 | 0.9167 | 0.9040 |
|
91 |
+
| 0.3546 | 40.0 | 1520 | 0.4631 | 0.92 | 0.9074 |
|
92 |
+
| 0.3352 | 41.0 | 1558 | 0.4497 | 0.9167 | 0.9040 |
|
93 |
+
| 0.3372 | 42.0 | 1596 | 0.4432 | 0.9233 | 0.9113 |
|
94 |
+
| 0.3054 | 43.0 | 1634 | 0.4299 | 0.92 | 0.9078 |
|
95 |
+
| 0.3032 | 44.0 | 1672 | 0.4217 | 0.9233 | 0.9130 |
|
96 |
+
| 0.2973 | 45.0 | 1710 | 0.4195 | 0.9233 | 0.9133 |
|
97 |
+
| 0.2805 | 46.0 | 1748 | 0.4140 | 0.92 | 0.9078 |
|
98 |
+
| 0.2725 | 47.0 | 1786 | 0.4074 | 0.9233 | 0.9113 |
|
99 |
+
| 0.2579 | 48.0 | 1824 | 0.4057 | 0.9267 | 0.9146 |
|
100 |
+
| 0.2477 | 49.0 | 1862 | 0.4078 | 0.92 | 0.9082 |
|
101 |
+
| 0.2485 | 50.0 | 1900 | 0.3917 | 0.92 | 0.9089 |
|
102 |
+
| 0.24 | 51.0 | 1938 | 0.3942 | 0.92 | 0.9082 |
|
103 |
+
| 0.2279 | 52.0 | 1976 | 0.3773 | 0.9267 | 0.9169 |
|
104 |
+
| 0.2148 | 53.0 | 2014 | 0.3794 | 0.92 | 0.9086 |
|
105 |
+
| 0.2077 | 54.0 | 2052 | 0.3789 | 0.92 | 0.9082 |
|
106 |
+
| 0.2061 | 55.0 | 2090 | 0.3770 | 0.9233 | 0.9135 |
|
107 |
+
| 0.204 | 56.0 | 2128 | 0.3779 | 0.9267 | 0.9165 |
|
108 |
+
| 0.191 | 57.0 | 2166 | 0.3713 | 0.92 | 0.9103 |
|
109 |
+
| 0.1914 | 58.0 | 2204 | 0.3731 | 0.9233 | 0.9133 |
|
110 |
+
| 0.1789 | 59.0 | 2242 | 0.3682 | 0.9233 | 0.9132 |
|
111 |
+
| 0.1808 | 60.0 | 2280 | 0.3650 | 0.9267 | 0.9167 |
|
112 |
+
| 0.1677 | 61.0 | 2318 | 0.3603 | 0.9233 | 0.9132 |
|
113 |
+
| 0.1747 | 62.0 | 2356 | 0.3589 | 0.9233 | 0.9132 |
|
114 |
+
| 0.1684 | 63.0 | 2394 | 0.3590 | 0.9167 | 0.9069 |
|
115 |
+
| 0.159 | 64.0 | 2432 | 0.3573 | 0.9233 | 0.9135 |
|
116 |
+
| 0.1535 | 65.0 | 2470 | 0.3618 | 0.92 | 0.9101 |
|
117 |
+
| 0.1563 | 66.0 | 2508 | 0.3632 | 0.92 | 0.9098 |
|
118 |
+
| 0.1415 | 67.0 | 2546 | 0.3543 | 0.9233 | 0.9132 |
|
119 |
+
| 0.1435 | 68.0 | 2584 | 0.3522 | 0.92 | 0.9103 |
|
120 |
+
| 0.1421 | 69.0 | 2622 | 0.3552 | 0.9233 | 0.9135 |
|
121 |
+
| 0.1388 | 70.0 | 2660 | 0.3558 | 0.93 | 0.9196 |
|
122 |
+
| 0.1382 | 71.0 | 2698 | 0.3536 | 0.9267 | 0.9182 |
|
123 |
+
| 0.1326 | 72.0 | 2736 | 0.3429 | 0.9233 | 0.9135 |
|
124 |
+
| 0.1303 | 73.0 | 2774 | 0.3466 | 0.9267 | 0.9169 |
|
125 |
+
| 0.1262 | 74.0 | 2812 | 0.3477 | 0.9233 | 0.9140 |
|
126 |
+
| 0.1247 | 75.0 | 2850 | 0.3458 | 0.9233 | 0.9140 |
|
127 |
+
| 0.1198 | 76.0 | 2888 | 0.3518 | 0.9267 | 0.9165 |
|
128 |
+
| 0.1175 | 77.0 | 2926 | 0.3517 | 0.9233 | 0.9135 |
|
129 |
+
| 0.119 | 78.0 | 2964 | 0.3531 | 0.9267 | 0.9181 |
|
130 |
+
| 0.1134 | 79.0 | 3002 | 0.3506 | 0.9267 | 0.9181 |
|
131 |
+
| 0.113 | 80.0 | 3040 | 0.3501 | 0.9233 | 0.9135 |
|
132 |
+
| 0.1167 | 81.0 | 3078 | 0.3486 | 0.9233 | 0.9135 |
|
133 |
+
| 0.1115 | 82.0 | 3116 | 0.3446 | 0.92 | 0.9103 |
|
134 |
+
| 0.111 | 83.0 | 3154 | 0.3494 | 0.9233 | 0.9135 |
|
135 |
+
| 0.107 | 84.0 | 3192 | 0.3504 | 0.9233 | 0.9135 |
|
136 |
+
| 0.1074 | 85.0 | 3230 | 0.3494 | 0.9233 | 0.9135 |
|
137 |
+
| 0.1092 | 86.0 | 3268 | 0.3446 | 0.92 | 0.9103 |
|
138 |
+
| 0.102 | 87.0 | 3306 | 0.3478 | 0.9233 | 0.9135 |
|
139 |
+
| 0.1067 | 88.0 | 3344 | 0.3451 | 0.92 | 0.9108 |
|
140 |
+
| 0.1073 | 89.0 | 3382 | 0.3477 | 0.9267 | 0.9181 |
|
141 |
+
| 0.1005 | 90.0 | 3420 | 0.3475 | 0.9233 | 0.9135 |
|
142 |
+
| 0.0987 | 91.0 | 3458 | 0.3495 | 0.9233 | 0.9135 |
|
143 |
+
| 0.1028 | 92.0 | 3496 | 0.3501 | 0.9233 | 0.9135 |
|
144 |
+
| 0.1027 | 93.0 | 3534 | 0.3498 | 0.9233 | 0.9135 |
|
145 |
+
| 0.0998 | 94.0 | 3572 | 0.3505 | 0.9233 | 0.9135 |
|
146 |
+
| 0.1 | 95.0 | 3610 | 0.3511 | 0.9233 | 0.9135 |
|
147 |
+
| 0.1013 | 96.0 | 3648 | 0.3509 | 0.9233 | 0.9135 |
|
148 |
+
| 0.1014 | 97.0 | 3686 | 0.3506 | 0.9267 | 0.9181 |
|
149 |
+
| 0.1034 | 98.0 | 3724 | 0.3509 | 0.9267 | 0.9181 |
|
150 |
+
| 0.0958 | 99.0 | 3762 | 0.3512 | 0.9267 | 0.9181 |
|
151 |
+
| 0.1029 | 100.0 | 3800 | 0.3512 | 0.9267 | 0.9181 |
|
152 |
|
153 |
|
154 |
### Framework versions
|