--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: KcELECTRA-small-v2022-finetuned-in-vehicle results: [] language: - ko pipeline_tag: text-classification widget: - text: "오늘 날씨 알려줘." example_title: "Example 1" - text: "방탄소년단 노래 찾아줘." example_title: "Example 2" --- # KcELECTRA-small-v2022-finetuned-in-vehicle This model is a fine-tuned version of [beomi/KcELECTRA-small-v2022](https://huggingface.co/beomi/KcELECTRA-small-v2022) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5573 - Accuracy: 0.8908 - F1: 0.8752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 3.3864 | 1.0 | 150 | 3.3222 | 0.0992 | 0.0179 | | 3.2362 | 2.0 | 300 | 3.0647 | 0.2342 | 0.1422 | | 2.9257 | 3.0 | 450 | 2.7001 | 0.3467 | 0.2377 | | 2.5953 | 4.0 | 600 | 2.3780 | 0.46 | 0.3409 | | 2.3033 | 5.0 | 750 | 2.1041 | 0.5025 | 0.3911 | | 2.0477 | 6.0 | 900 | 1.8675 | 0.5583 | 0.4585 | | 1.8309 | 7.0 | 1050 | 1.6711 | 0.6167 | 0.5354 | | 1.6455 | 8.0 | 1200 | 1.5126 | 0.6667 | 0.5924 | | 1.4883 | 9.0 | 1350 | 1.3677 | 0.7325 | 0.6660 | | 1.3473 | 10.0 | 1500 | 1.2435 | 0.7542 | 0.6914 | | 1.23 | 11.0 | 1650 | 1.1460 | 0.7517 | 0.6911 | | 1.1299 | 12.0 | 1800 | 1.0577 | 0.7792 | 0.7251 | | 1.0437 | 13.0 | 1950 | 0.9860 | 0.7908 | 0.7397 | | 0.9683 | 14.0 | 2100 | 0.9219 | 0.8092 | 0.7625 | | 0.8973 | 15.0 | 2250 | 0.8622 | 0.8342 | 0.8028 | | 0.8417 | 16.0 | 2400 | 0.8129 | 0.8408 | 0.8122 | | 0.7891 | 17.0 | 2550 | 0.7719 | 0.85 | 0.8264 | | 0.743 | 18.0 | 2700 | 0.7323 | 0.8583 | 0.8353 | | 0.7037 | 19.0 | 2850 | 0.7005 | 0.8583 | 0.8341 | | 0.6715 | 20.0 | 3000 | 0.6696 | 0.8717 | 0.8494 | | 0.6396 | 21.0 | 3150 | 0.6469 | 0.8767 | 0.8546 | | 0.6117 | 22.0 | 3300 | 0.6285 | 0.8808 | 0.8613 | | 0.5897 | 23.0 | 3450 | 0.6137 | 0.88 | 0.8618 | | 0.5684 | 24.0 | 3600 | 0.5956 | 0.88 | 0.8604 | | 0.5522 | 25.0 | 3750 | 0.5851 | 0.8808 | 0.8622 | | 0.5429 | 26.0 | 3900 | 0.5741 | 0.8867 | 0.8697 | | 0.53 | 27.0 | 4050 | 0.5672 | 0.8892 | 0.8730 | | 0.5234 | 28.0 | 4200 | 0.5616 | 0.8892 | 0.8733 | | 0.5184 | 29.0 | 4350 | 0.5580 | 0.89 | 0.8738 | | 0.5138 | 30.0 | 4500 | 0.5573 | 0.8908 | 0.8752 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2