File size: 10,077 Bytes
fcf111b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import json
import re
import uuid
import os
import requests
from PIL import Image
from PIL import ImageOps
from io import BytesIO
from urllib.parse import urlparse
from pathlib import Path
from tqdm import tqdm
import gradio as gr
from gradio.components import Textbox, Radio, Dataframe
import torch
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import SeparatorStyle, conv_templates
from llava.mm_utils import (
    KeywordsStoppingCriteria,
    get_model_name_from_path,
    process_images,
    tokenizer_image_token,
)
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init

# Set CUDA device
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

disable_torch_init()
torch.manual_seed(1234)

# Load model and other necessary components
MODEL = "LeroyDyer/Mixtral_AI_Vision-Instruct_X"
model_name = get_model_name_from_path(MODEL)
tokenizer, model, image_processor, context_len = load_pretrained_model(
    model_path=MODEL, model_base=None, model_name=model_name, device="cuda"
)

def get_extension_from_url(url):
    """
    Extract the file extension from the given URL.
    """
    parsed_url = urlparse(url)
    path = Path(parsed_url.path)
    return path.suffix

def remove_transparency(image):
    if image.mode in ('RGBA', 'LA') or (image.mode == 'P' and 'transparency' in image.info):
        alpha = image.convert('RGBA').split()[-1]
        bg = Image.new("RGB", image.size, (255, 255, 255))
        bg.paste(image, mask=alpha)
        return bg
    else:
        return image

def load_image(image_file):
    if image_file.startswith("http://") or image_file.startswith("https://"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    image = remove_transparency(image)
    return image

def process_image(image):
    args = {"image_aspect_ratio": "pad"}
    image_tensor = process_images([image], image_processor, args)
    return image_tensor.to(model.device, dtype=torch.float16)

def create_prompt(prompt: str):
    conv = conv_templates["llava_v0"].copy()
    roles = conv.roles
    prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
    conv.append_message(roles[0], prompt)
    conv.append_message(roles[1], None)
    return conv.get_prompt(), conv

def remove_duplicates(string):
    words = string.split()
    unique_words = []

    for word in words:
        if word not in unique_words:
            unique_words.append(word)

    return ' '.join(unique_words)

def ask_image(image: Image, prompt: str):
    image_tensor = process_image(image)
    prompt, conv = create_prompt(prompt)
    input_ids = (
        tokenizer_image_token(
            prompt,
            tokenizer,
            IMAGE_TOKEN_INDEX,
            return_tensors="pt",
        )
        .unsqueeze(0)
        .to(model.device)
    )

    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    stopping_criteria = KeywordsStoppingCriteria(keywords=[stop_str], tokenizer=tokenizer, input_ids=input_ids)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.2,
            max_new_tokens=2048,
            use_cache=True,
            stopping_criteria=[stopping_criteria],
        )
    generated_caption = tokenizer.decode(output_ids[0, input_ids.shape[1] :], skip_special_tokens=True).strip()

    # Remove unnecessary phrases from the generated caption
    unnecessary_phrases = [
        "The person is a",
        "The image is",
        "looking directly at the camera",
        "in the image",
        "taking a selfie",
        "posing for a picture",
        "holding a cellphone",
        "is wearing a pair of sunglasses",
        "pulled back in a ponytail",
        "with a large window in the cent",
        "and there are no other people or objects in the scene.",
        " and.",
        "..",
        " is.",
    ]

    for phrase in unnecessary_phrases:
        generated_caption = generated_caption.replace(phrase, "")

    # Split the caption into sentences
    sentences = generated_caption.split('. ')

    # Check if the last sentence is a fragment and remove it if necessary
    min_sentence_length = 3
    if len(sentences) > 1:
        last_sentence = sentences[-1]
        if len(last_sentence.split()) <= min_sentence_length:
            sentences = sentences[:-1]

    # Keep only the first three sentences and append periods
    sentences = [s.strip() + '.' for s in sentences[:3]]

    generated_caption = ' '.join(sentences)

    generated_caption = remove_duplicates(generated_caption)  # Remove duplicate words

    return generated_caption


def fix_generated_caption(generated_caption):
    # Remove unnecessary phrases from the generated caption
    unnecessary_phrases = [
        "The person is",
        "The image is",
        "looking directly at the camera",
        "in the image",
        "taking a selfie",
        "posing for a picture",
        "holding a cellphone",
        "is wearing a pair of sunglasses",
        "pulled back in a ponytail",
        "with a large window in the cent",
        "and there are no other people or objects in the scene.",
        " and.",
        "..",
        " is.",
    ]

    for phrase in unnecessary_phrases:
        generated_caption = generated_caption.replace(phrase, "")

    # Split the caption into sentences
    sentences = generated_caption.split('. ')

    # Check if the last sentence is a fragment and remove it if necessary
    min_sentence_length = 3
    if len(sentences) > 1:
        last_sentence = sentences[-1]
        if len(last_sentence.split()) <= min_sentence_length:
            sentences = sentences[:-1]

    # Capitalize the first letter of the caption and add "a" at the beginning
    sentences[0] = sentences[0].strip().capitalize()
    sentences[0] = "a " + sentences[0] if not sentences[0].startswith("A ") else sentences[0]

    generated_caption = '. '.join(sentences)

    generated_caption = remove_duplicates(generated_caption)  # Remove duplicate words

    return generated_caption

def find_image_urls(data, url_pattern=re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+\.(?:jpg|jpeg|png|webp)')):
    """
    Recursively search for image URLs in a JSON object.
    """
    if isinstance(data, list):
        for item in data:
            for url in find_image_urls(item, url_pattern):
                yield url
    elif isinstance(data, dict):
        for value in data.values():
            for url in find_image_urls(value, url_pattern):
                yield url
    elif isinstance(data, str) and url_pattern.match(data):
        yield data

def gradio_interface(directory_path, prompt, exist):
    image_paths = [os.path.join(directory_path, f) for f in os.listdir(directory_path) if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    captions = []
    
    # Check for images.json and process it
    json_path = os.path.join(directory_path, 'images.json')
    if os.path.exists(json_path):
        with open(json_path, 'r') as json_file:
            data = json.load(json_file)
            image_urls = list(find_image_urls(data))
            for url in image_urls:
                try:
                    # Generate a unique filename for each image with the correct extension
                    extension = get_extension_from_url(url) or '.jpg'  # Default to .jpg if no extension is found
                    unique_filename = str(uuid.uuid4()) + extension
                    unique_filepath = os.path.join(directory_path, unique_filename)
                    response = requests.get(url)
                    with open(unique_filepath, 'wb') as img_file:
                        img_file.write(response.content)
                    image_paths.append(unique_filepath)
                except Exception as e:
                    captions.append((url, f"Error downloading {url}: {e}"))

    # Process each image path with tqdm progress tracker
    for im_path in tqdm(image_paths, desc="Captioning Images", unit="image"):
        base_name = os.path.splitext(os.path.basename(im_path))[0]
        caption_path = os.path.join(directory_path, base_name + '.caption')

        # Handling existing files
        if os.path.exists(caption_path) and exist == 'skip':
            captions.append((base_name, "Skipped existing caption"))
            continue
        elif os.path.exists(caption_path) and exist == 'add':
            mode = 'a'
        else:
            mode = 'w'

        # Image captioning
        try:
            im = load_image(im_path)
            result = ask_image(im, prompt)

            # Fix the generated caption
            fixed_result = fix_generated_caption(result)

            # Writing to a text file
            with open(caption_path, mode) as file:
                if mode == 'a':
                    file.write("\n")
                file.write(fixed_result)  # Write the fixed caption

            captions.append((base_name, fixed_result))
        except Exception as e:
            captions.append((base_name, f"Error processing {im_path}: {e}"))

    return captions

iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        Textbox(label="Directory Path"),
        Textbox(default="Describe the persons, The person is appearance like eyes color, hair color, skin color, and the clothes, object position the scene and the situation. Please describe it detailed. Don't explain the artstyle of the image", label="Captioning Prompt"),
        Radio(["skip", "replace", "add"], label="Existing Caption Action", default="skip")
    ],
    outputs=[
        Dataframe(type="pandas", headers=["Image", "Caption"], label="Captions")
    ],
    title="Image Captioning",
    description="Generate captions for images in a specified directory."
)

# Run the Gradio app
if __name__ == "__main__":
    iface.launch()