File size: 3,912 Bytes
b2b31f0
 
b3289b4
 
 
 
 
 
 
 
 
b2b31f0
3856af5
b3289b4
3392b04
b3289b4
3392b04
b3289b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
tags:
- gguf
- quantized
- roleplay
- multimodal
- vision
- sillytavern
- merge
- mistral
---

This repository hosts GGUF-IQ-Imatrix quants for [ResplendentAI/DaturaCookie_7B](https://huggingface.co/ResplendentAI/DaturaCookie_7B).

This is a #multimodal model that also has vision capabilities. Read the full card information if that is your use case.

Quants:
```python
    quantization_options = [
        "Q4_K_M", "Q4_K_S", "IQ4_XS", "Q5_K_M", "Q5_K_S",
        "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XXS"
    ]
```

**What does "Imatrix" mean?**

It stands for **Importance Matrix**, a technique used to improve the quality of quantized models.
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process.
The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance, especially when the calibration data is diverse.
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)

For imatrix data generation, kalomaze's `groups_merged.txt` with added roleplay chats was used, you can find it [here](https://huggingface.co/Lewdiculous/Datura_7B-GGUF-Imatrix/blob/main/imatrix-with-rp-format-data.txt). This was just to add a bit more diversity to the data.

# Vision/multimodal capabilities:

<details><summary>
Click here to see how this would work in practice in a roleplay chat.
</summary>
  
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/qGO0nIfZVcyuio5J07sU-.jpeg)
  
</details><br>

<details><summary>
Click here to see what your SillyTavern Image Captions extension settings should look like.
</summary>
  
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/UpXOnVrzvsMRYeqMaSOaa.jpeg)
  
</details><br>

**If you want to use vision functionality:**

* Make sure you are using the latest version of [KoboldCpp](https://github.com/LostRuins/koboldcpp).

To use the multimodal capabilities of this model, such as **vision**, you also need to load the specified **mmproj** file, you can get it [here](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/mmproj-model-f16.gguf), it's also hosted in this repository inside the **mmproj** folder.

* You can load the **mmproj** by using the corresponding section in the interface:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/UX6Ubss2EPNAT3SKGMLe0.png)

* For CLI users, you can load the **mmproj file** by adding the respective flag to your usual command:

```
--mmproj your-mmproj-file.gguf
```

# Quantization information:

**Steps performed:**

```
Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)
```
*Using the latest llama.cpp at the time.*

# Original model information:

# DaturaCookie

![image/png](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/5jG2dft51fgPcGUGc-4Ym.png)

Proficient at roleplaying and lightehearted conversation, this model is prone to NSFW outputs.

### Models Merged

The following models were included in the merge:
* [ResplendentAI/Datura_7B](https://huggingface.co/ResplendentAI/Datura_7B)
* [ChaoticNeutrals/Cookie_7B](https://huggingface.co/ChaoticNeutrals/Cookie_7B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: ChaoticNeutrals/Cookie_7B
        layer_range: [0, 32]
      - model: ResplendentAI/Datura_7B
        layer_range: [0, 32]
merge_method: slerp
base_model: ResplendentAI/Datura_7B
parameters:
  t:
    - filter: self_attn
      value: [1, 0.75, 0.5, 0.25, 0]
    - filter: mlp
      value: [0, 0.25, 0.5, 0.75, 1]
    - value: 0.5
dtype: bfloat16
```