Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.64 +/- 0.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b14f1c5f72592a4f171bec85784ce1a747cc07eea3a94a860eba82dcbe9e6a05
|
3 |
+
size 109537
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f88ade73430>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f88ade71fc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682437714060015173,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz56qPl02wDuG+wU/z56qPl02wDuG+wU/z56qPl02wDuG+wU/z56qPl02wDuG+wU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMfjFPaK4p78VHto/QBUEvz4Dlj8FvUQ/RISqP7KCWb6XwJo/GJhnP2yxMT8J58s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7rPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7rPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7rPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7qUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.33324286 0.00586586 0.5233692 ]\n [0.33324286 0.00586586 0.5233692 ]\n [0.33324286 0.00586586 0.5233692 ]\n [0.33324286 0.00586586 0.5233692 ]]",
|
38 |
+
"desired_goal": "[[ 0.09666479 -1.310322 1.704043 ]\n [-0.51594925 1.171974 0.7685092 ]\n [ 1.3321614 -0.21241263 1.2090024 ]\n [ 0.9046645 0.6941135 0.39824703]]",
|
39 |
+
"observation": "[[ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]\n [ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]\n [ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]\n [ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtcVPvVjs4r2o14g+50z4PBxrwTxqnao7e082vCe26L1oMEM+zf0WPijfUr0g8v49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.05072566 -0.11080235 0.26727033]\n [ 0.03031011 0.02361064 0.00520675]\n [-0.01112735 -0.11362868 0.19061434]\n [ 0.14745255 -0.05148235 0.12448525]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": true,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVb5nJEKjAcCUhpRSlIwBbJRLMowBdJRHQKMoaDjin511fZQoaAZoCWgPQwisqwK1GHz5v5SGlFKUaBVLMmgWR0CjKCmeDnNgdX2UKGgGaAloD0MIwLM9esN9/r+UhpRSlGgVSzJoFkdAoyfs+7lJYnV9lChoBmgJaA9DCKGFBIwu7/2/lIaUUpRoFUsyaBZHQKMnsbADaGp1fZQoaAZoCWgPQwgzT64pkFn6v5SGlFKUaBVLMmgWR0CjKUMANoaldX2UKGgGaAloD0MI+tSxSumZ+b+UhpRSlGgVSzJoFkdAoykEgB91EHV9lChoBmgJaA9DCFNaf0sAXgDAlIaUUpRoFUsyaBZHQKMox2Dg62h1fZQoaAZoCWgPQwglBRbAlMH+v5SGlFKUaBVLMmgWR0CjKIt34bjtdX2UKGgGaAloD0MIx/KuesC8+r+UhpRSlGgVSzJoFkdAoyorJOnEVHV9lChoBmgJaA9DCP59xoUD4fy/lIaUUpRoFUsyaBZHQKMp7YBeXzF1fZQoaAZoCWgPQwi5jnHFxdH6v5SGlFKUaBVLMmgWR0CjKbD/VAiWdX2UKGgGaAloD0MIs89jlGce9b+UhpRSlGgVSzJoFkdAoyl1nh86WHV9lChoBmgJaA9DCE890uC29vm/lIaUUpRoFUsyaBZHQKMrBRG+bmV1fZQoaAZoCWgPQwgzjLtBtFb5v5SGlFKUaBVLMmgWR0CjKsZ26kIpdX2UKGgGaAloD0MIQL/v37z4/b+UhpRSlGgVSzJoFkdAoyqJRMvh63V9lChoBmgJaA9DCAMLYMrAAfu/lIaUUpRoFUsyaBZHQKMqTWOIZZV1fZQoaAZoCWgPQwiDh2nf3N/9v5SGlFKUaBVLMmgWR0CjK9vV3EAHdX2UKGgGaAloD0MIpaMczCZAAMCUhpRSlGgVSzJoFkdAoyudXFLnLnV9lChoBmgJaA9DCAIR4srZ+/q/lIaUUpRoFUsyaBZHQKMrYKBNEgJ1fZQoaAZoCWgPQwjay7bT1gj5v5SGlFKUaBVLMmgWR0CjKyS75Ec9dX2UKGgGaAloD0MIskl+xK/Y9r+UhpRSlGgVSzJoFkdAoyy72alUInV9lChoBmgJaA9DCAYujzUjg/W/lIaUUpRoFUsyaBZHQKMsfYAbQ1J1fZQoaAZoCWgPQwhmSutvCcD7v5SGlFKUaBVLMmgWR0CjLEBuGbkPdX2UKGgGaAloD0MIqinJOhxd/b+UhpRSlGgVSzJoFkdAoywEhPj4pXV9lChoBmgJaA9DCCWxpNx9zvu/lIaUUpRoFUsyaBZHQKMtkt03fhx1fZQoaAZoCWgPQwhntcAeEyn9v5SGlFKUaBVLMmgWR0CjLVRhttQ9dX2UKGgGaAloD0MIEi7kEdzI/7+UhpRSlGgVSzJoFkdAoy0XNNahYnV9lChoBmgJaA9DCKp8z0iEZgDAlIaUUpRoFUsyaBZHQKMs2z5XU6R1fZQoaAZoCWgPQwiga19AL5z7v5SGlFKUaBVLMmgWR0CjLmVjy4FzdX2UKGgGaAloD0MI2J5ZEqBGAMCUhpRSlGgVSzJoFkdAoy4m0E5hjXV9lChoBmgJaA9DCNCX3v5cNPW/lIaUUpRoFUsyaBZHQKMt6aQ3gk11fZQoaAZoCWgPQwg+B5YjZCD7v5SGlFKUaBVLMmgWR0CjLa24EwFldX2UKGgGaAloD0MI2quPh75bAMCUhpRSlGgVSzJoFkdAoy8+plz2e3V9lChoBmgJaA9DCNcxrrg4qvi/lIaUUpRoFUsyaBZHQKMvAAzYVZd1fZQoaAZoCWgPQwguq7AZ4ML+v5SGlFKUaBVLMmgWR0CjLsL9MsYmdX2UKGgGaAloD0MIDTfg88OI97+UhpRSlGgVSzJoFkdAoy6HT9bX6XV9lChoBmgJaA9DCOEmo8ow7vu/lIaUUpRoFUsyaBZHQKMwHeWOZLJ1fZQoaAZoCWgPQwiERrBx/Tv8v5SGlFKUaBVLMmgWR0CjL99QwblzdX2UKGgGaAloD0MIFt7lIr4T/7+UhpRSlGgVSzJoFkdAoy+iGN70F3V9lChoBmgJaA9DCBFWYwlr4/i/lIaUUpRoFUsyaBZHQKMvZmpVCHB1fZQoaAZoCWgPQwg1s5YC0j75v5SGlFKUaBVLMmgWR0CjMP2Bz3h5dX2UKGgGaAloD0MIJv+Tv3tH/L+UhpRSlGgVSzJoFkdAozC++oLofXV9lChoBmgJaA9DCO7MBMO5hva/lIaUUpRoFUsyaBZHQKMwgeJYT0x1fZQoaAZoCWgPQwh0Q1N2+gH6v5SGlFKUaBVLMmgWR0CjMEbMPjGUdX2UKGgGaAloD0MIY9S19j71AMCUhpRSlGgVSzJoFkdAozHNlEqlQHV9lChoBmgJaA9DCA1S8BRy5QDAlIaUUpRoFUsyaBZHQKMxjvDxb0R1fZQoaAZoCWgPQwi1boPab635v5SGlFKUaBVLMmgWR0CjMVG8274BdX2UKGgGaAloD0MIHozYJ4Ai+b+UhpRSlGgVSzJoFkdAozEVvwVj7XV9lChoBmgJaA9DCLQh/8wgvvy/lIaUUpRoFUsyaBZHQKMyny2hIvt1fZQoaAZoCWgPQwik4v+OqBD9v5SGlFKUaBVLMmgWR0CjMmELhJiBdX2UKGgGaAloD0MIT5DY7h4g+7+UhpRSlGgVSzJoFkdAozIj+glF+nV9lChoBmgJaA9DCDeOWItPQfq/lIaUUpRoFUsyaBZHQKMx6Bz3h4t1fZQoaAZoCWgPQwjQnWD/da76v5SGlFKUaBVLMmgWR0CjM4gGbCrMdX2UKGgGaAloD0MIyF9a1Ce59L+UhpRSlGgVSzJoFkdAozNJ71Iy03V9lChoBmgJaA9DCDgteNFXEPm/lIaUUpRoFUsyaBZHQKMzDN7Bwdd1fZQoaAZoCWgPQwhaLhud81P6v5SGlFKUaBVLMmgWR0CjMtD7655JdX2UKGgGaAloD0MIIVuWr8uw9b+UhpRSlGgVSzJoFkdAozRhqTKT0XV9lChoBmgJaA9DCCF1O/vKw/u/lIaUUpRoFUsyaBZHQKM0I4LkS291fZQoaAZoCWgPQwjwGYnQCDb+v5SGlFKUaBVLMmgWR0CjM+Zsj3VTdX2UKGgGaAloD0MIpG38icrG+7+UhpRSlGgVSzJoFkdAozOqY9gWrXV9lChoBmgJaA9DCFvuzATDefu/lIaUUpRoFUsyaBZHQKM1OPvKEFp1fZQoaAZoCWgPQwj5Eb9iDRf/v5SGlFKUaBVLMmgWR0CjNPp3PiT/dX2UKGgGaAloD0MIqio0EMsm/r+UhpRSlGgVSzJoFkdAozS9XHR1HXV9lChoBmgJaA9DCDT0T3CxIvy/lIaUUpRoFUsyaBZHQKM0gYE4ecR1fZQoaAZoCWgPQwjS+8bXntn9v5SGlFKUaBVLMmgWR0CjNlssxwhodX2UKGgGaAloD0MIQzf7A+W2+b+UhpRSlGgVSzJoFkdAozYdEmY0EXV9lChoBmgJaA9DCBqJ0Ag2rvu/lIaUUpRoFUsyaBZHQKM14H8CPp91fZQoaAZoCWgPQwjb/SrAd5v7v5SGlFKUaBVLMmgWR0CjNaUkOZssdX2UKGgGaAloD0MIoG6gwDv5/b+UhpRSlGgVSzJoFkdAoze+LNwBHXV9lChoBmgJaA9DCD6XqUnwxvu/lIaUUpRoFUsyaBZHQKM3gEIPbwl1fZQoaAZoCWgPQwiASSpTzEH+v5SGlFKUaBVLMmgWR0CjN0OYIBzWdX2UKGgGaAloD0MIPKQYINEE9r+UhpRSlGgVSzJoFkdAozcINZvDQHV9lChoBmgJaA9DCHcxzXSv0/2/lIaUUpRoFUsyaBZHQKM5BU6PsAx1fZQoaAZoCWgPQwgGTODW3fz9v5SGlFKUaBVLMmgWR0CjOMcxj8UFdX2UKGgGaAloD0MIHNE96xpt/L+UhpRSlGgVSzJoFkdAoziKcy31BnV9lChoBmgJaA9DCAnf+xu0V/2/lIaUUpRoFUsyaBZHQKM4TvCuU2V1fZQoaAZoCWgPQwjudr00RcD7v5SGlFKUaBVLMmgWR0CjOlOCwr1/dX2UKGgGaAloD0MIw/ARMSVS+L+UhpRSlGgVSzJoFkdAozoWDtgKGHV9lChoBmgJaA9DCESmfAiqRvy/lIaUUpRoFUsyaBZHQKM52ZgogFJ1fZQoaAZoCWgPQwgCui9ntqv4v5SGlFKUaBVLMmgWR0CjOZ41gpjMdX2UKGgGaAloD0MIZ5yGqMJf+L+UhpRSlGgVSzJoFkdAozug77sOXnV9lChoBmgJaA9DCNtv7URJSADAlIaUUpRoFUsyaBZHQKM7YtWdVed1fZQoaAZoCWgPQwgzpIriVRb9v5SGlFKUaBVLMmgWR0CjOyZMDfWMdX2UKGgGaAloD0MI68iRzsDI9r+UhpRSlGgVSzJoFkdAozrq8g6ltXV9lChoBmgJaA9DCMVztoDQ+vS/lIaUUpRoFUsyaBZHQKM8+JXQtz11fZQoaAZoCWgPQwhjtfl/1ZH9v5SGlFKUaBVLMmgWR0CjPLraEi+tdX2UKGgGaAloD0MIwi/186bi+7+UhpRSlGgVSzJoFkdAozx+OZLIxXV9lChoBmgJaA9DCJo+O+C6Yvi/lIaUUpRoFUsyaBZHQKM8RJUYKpl1fZQoaAZoCWgPQwhM/5JUptj6v5SGlFKUaBVLMmgWR0CjPkpEYwZgdX2UKGgGaAloD0MICOkpcoj4/b+UhpRSlGgVSzJoFkdAoz4MRFqi5HV9lChoBmgJaA9DCDqSy39IP/q/lIaUUpRoFUsyaBZHQKM9z6yB06p1fZQoaAZoCWgPQwg3+wPltv35v5SGlFKUaBVLMmgWR0CjPZRJNCZ4dX2UKGgGaAloD0MIM6g2OBH9/r+UhpRSlGgVSzJoFkdAoz+UJF9a2XV9lChoBmgJaA9DCKlOB7KeGvq/lIaUUpRoFUsyaBZHQKM/VbhWHUN1fZQoaAZoCWgPQwiy2ZHqO//2v5SGlFKUaBVLMmgWR0CjPxjhUBGQdX2UKGgGaAloD0MIyF2EKcol97+UhpRSlGgVSzJoFkdAoz7c85jpcHV9lChoBmgJaA9DCLmMmxpovva/lIaUUpRoFUsyaBZHQKNAb/zasZJ1fZQoaAZoCWgPQwhNZryt9Jr5v5SGlFKUaBVLMmgWR0CjQDFnyup0dX2UKGgGaAloD0MIGELO+/+4+b+UhpRSlGgVSzJoFkdAoz/0RYigTXV9lChoBmgJaA9DCAslk1M7w/m/lIaUUpRoFUsyaBZHQKM/uFwDNhV1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 31250,
|
66 |
+
"n_steps": 8,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 0.9,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5afb839a9ac899255a4a18c91d7dd9d7d0651d48cf208e67ccd41843368c47a
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6c847e0b6c50b57604c6fefdfbb1315818e121b8de61f2da24c1e66d5a932a9
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f88ade73430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f88ade71fc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682437714060015173, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz56qPl02wDuG+wU/z56qPl02wDuG+wU/z56qPl02wDuG+wU/z56qPl02wDuG+wU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMfjFPaK4p78VHto/QBUEvz4Dlj8FvUQ/RISqP7KCWb6XwJo/GJhnP2yxMT8J58s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7rPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7rPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7rPnqo+XTbAO4b7BT+oCiu8rek8OZOvd7qUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.33324286 0.00586586 0.5233692 ]\n [0.33324286 0.00586586 0.5233692 ]\n [0.33324286 0.00586586 0.5233692 ]\n [0.33324286 0.00586586 0.5233692 ]]", "desired_goal": "[[ 0.09666479 -1.310322 1.704043 ]\n [-0.51594925 1.171974 0.7685092 ]\n [ 1.3321614 -0.21241263 1.2090024 ]\n [ 0.9046645 0.6941135 0.39824703]]", "observation": "[[ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]\n [ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]\n [ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]\n [ 3.3324286e-01 5.8658556e-03 5.2336919e-01 -1.0439552e-02\n 1.8016128e-04 -9.4484648e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtcVPvVjs4r2o14g+50z4PBxrwTxqnao7e082vCe26L1oMEM+zf0WPijfUr0g8v49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05072566 -0.11080235 0.26727033]\n [ 0.03031011 0.02361064 0.00520675]\n [-0.01112735 -0.11362868 0.19061434]\n [ 0.14745255 -0.05148235 0.12448525]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVb5nJEKjAcCUhpRSlIwBbJRLMowBdJRHQKMoaDjin511fZQoaAZoCWgPQwisqwK1GHz5v5SGlFKUaBVLMmgWR0CjKCmeDnNgdX2UKGgGaAloD0MIwLM9esN9/r+UhpRSlGgVSzJoFkdAoyfs+7lJYnV9lChoBmgJaA9DCKGFBIwu7/2/lIaUUpRoFUsyaBZHQKMnsbADaGp1fZQoaAZoCWgPQwgzT64pkFn6v5SGlFKUaBVLMmgWR0CjKUMANoaldX2UKGgGaAloD0MI+tSxSumZ+b+UhpRSlGgVSzJoFkdAoykEgB91EHV9lChoBmgJaA9DCFNaf0sAXgDAlIaUUpRoFUsyaBZHQKMox2Dg62h1fZQoaAZoCWgPQwglBRbAlMH+v5SGlFKUaBVLMmgWR0CjKIt34bjtdX2UKGgGaAloD0MIx/KuesC8+r+UhpRSlGgVSzJoFkdAoyorJOnEVHV9lChoBmgJaA9DCP59xoUD4fy/lIaUUpRoFUsyaBZHQKMp7YBeXzF1fZQoaAZoCWgPQwi5jnHFxdH6v5SGlFKUaBVLMmgWR0CjKbD/VAiWdX2UKGgGaAloD0MIs89jlGce9b+UhpRSlGgVSzJoFkdAoyl1nh86WHV9lChoBmgJaA9DCE890uC29vm/lIaUUpRoFUsyaBZHQKMrBRG+bmV1fZQoaAZoCWgPQwgzjLtBtFb5v5SGlFKUaBVLMmgWR0CjKsZ26kIpdX2UKGgGaAloD0MIQL/v37z4/b+UhpRSlGgVSzJoFkdAoyqJRMvh63V9lChoBmgJaA9DCAMLYMrAAfu/lIaUUpRoFUsyaBZHQKMqTWOIZZV1fZQoaAZoCWgPQwiDh2nf3N/9v5SGlFKUaBVLMmgWR0CjK9vV3EAHdX2UKGgGaAloD0MIpaMczCZAAMCUhpRSlGgVSzJoFkdAoyudXFLnLnV9lChoBmgJaA9DCAIR4srZ+/q/lIaUUpRoFUsyaBZHQKMrYKBNEgJ1fZQoaAZoCWgPQwjay7bT1gj5v5SGlFKUaBVLMmgWR0CjKyS75Ec9dX2UKGgGaAloD0MIskl+xK/Y9r+UhpRSlGgVSzJoFkdAoyy72alUInV9lChoBmgJaA9DCAYujzUjg/W/lIaUUpRoFUsyaBZHQKMsfYAbQ1J1fZQoaAZoCWgPQwhmSutvCcD7v5SGlFKUaBVLMmgWR0CjLEBuGbkPdX2UKGgGaAloD0MIqinJOhxd/b+UhpRSlGgVSzJoFkdAoywEhPj4pXV9lChoBmgJaA9DCCWxpNx9zvu/lIaUUpRoFUsyaBZHQKMtkt03fhx1fZQoaAZoCWgPQwhntcAeEyn9v5SGlFKUaBVLMmgWR0CjLVRhttQ9dX2UKGgGaAloD0MIEi7kEdzI/7+UhpRSlGgVSzJoFkdAoy0XNNahYnV9lChoBmgJaA9DCKp8z0iEZgDAlIaUUpRoFUsyaBZHQKMs2z5XU6R1fZQoaAZoCWgPQwiga19AL5z7v5SGlFKUaBVLMmgWR0CjLmVjy4FzdX2UKGgGaAloD0MI2J5ZEqBGAMCUhpRSlGgVSzJoFkdAoy4m0E5hjXV9lChoBmgJaA9DCNCX3v5cNPW/lIaUUpRoFUsyaBZHQKMt6aQ3gk11fZQoaAZoCWgPQwg+B5YjZCD7v5SGlFKUaBVLMmgWR0CjLa24EwFldX2UKGgGaAloD0MI2quPh75bAMCUhpRSlGgVSzJoFkdAoy8+plz2e3V9lChoBmgJaA9DCNcxrrg4qvi/lIaUUpRoFUsyaBZHQKMvAAzYVZd1fZQoaAZoCWgPQwguq7AZ4ML+v5SGlFKUaBVLMmgWR0CjLsL9MsYmdX2UKGgGaAloD0MIDTfg88OI97+UhpRSlGgVSzJoFkdAoy6HT9bX6XV9lChoBmgJaA9DCOEmo8ow7vu/lIaUUpRoFUsyaBZHQKMwHeWOZLJ1fZQoaAZoCWgPQwiERrBx/Tv8v5SGlFKUaBVLMmgWR0CjL99QwblzdX2UKGgGaAloD0MIFt7lIr4T/7+UhpRSlGgVSzJoFkdAoy+iGN70F3V9lChoBmgJaA9DCBFWYwlr4/i/lIaUUpRoFUsyaBZHQKMvZmpVCHB1fZQoaAZoCWgPQwg1s5YC0j75v5SGlFKUaBVLMmgWR0CjMP2Bz3h5dX2UKGgGaAloD0MIJv+Tv3tH/L+UhpRSlGgVSzJoFkdAozC++oLofXV9lChoBmgJaA9DCO7MBMO5hva/lIaUUpRoFUsyaBZHQKMwgeJYT0x1fZQoaAZoCWgPQwh0Q1N2+gH6v5SGlFKUaBVLMmgWR0CjMEbMPjGUdX2UKGgGaAloD0MIY9S19j71AMCUhpRSlGgVSzJoFkdAozHNlEqlQHV9lChoBmgJaA9DCA1S8BRy5QDAlIaUUpRoFUsyaBZHQKMxjvDxb0R1fZQoaAZoCWgPQwi1boPab635v5SGlFKUaBVLMmgWR0CjMVG8274BdX2UKGgGaAloD0MIHozYJ4Ai+b+UhpRSlGgVSzJoFkdAozEVvwVj7XV9lChoBmgJaA9DCLQh/8wgvvy/lIaUUpRoFUsyaBZHQKMyny2hIvt1fZQoaAZoCWgPQwik4v+OqBD9v5SGlFKUaBVLMmgWR0CjMmELhJiBdX2UKGgGaAloD0MIT5DY7h4g+7+UhpRSlGgVSzJoFkdAozIj+glF+nV9lChoBmgJaA9DCDeOWItPQfq/lIaUUpRoFUsyaBZHQKMx6Bz3h4t1fZQoaAZoCWgPQwjQnWD/da76v5SGlFKUaBVLMmgWR0CjM4gGbCrMdX2UKGgGaAloD0MIyF9a1Ce59L+UhpRSlGgVSzJoFkdAozNJ71Iy03V9lChoBmgJaA9DCDgteNFXEPm/lIaUUpRoFUsyaBZHQKMzDN7Bwdd1fZQoaAZoCWgPQwhaLhud81P6v5SGlFKUaBVLMmgWR0CjMtD7655JdX2UKGgGaAloD0MIIVuWr8uw9b+UhpRSlGgVSzJoFkdAozRhqTKT0XV9lChoBmgJaA9DCCF1O/vKw/u/lIaUUpRoFUsyaBZHQKM0I4LkS291fZQoaAZoCWgPQwjwGYnQCDb+v5SGlFKUaBVLMmgWR0CjM+Zsj3VTdX2UKGgGaAloD0MIpG38icrG+7+UhpRSlGgVSzJoFkdAozOqY9gWrXV9lChoBmgJaA9DCFvuzATDefu/lIaUUpRoFUsyaBZHQKM1OPvKEFp1fZQoaAZoCWgPQwj5Eb9iDRf/v5SGlFKUaBVLMmgWR0CjNPp3PiT/dX2UKGgGaAloD0MIqio0EMsm/r+UhpRSlGgVSzJoFkdAozS9XHR1HXV9lChoBmgJaA9DCDT0T3CxIvy/lIaUUpRoFUsyaBZHQKM0gYE4ecR1fZQoaAZoCWgPQwjS+8bXntn9v5SGlFKUaBVLMmgWR0CjNlssxwhodX2UKGgGaAloD0MIQzf7A+W2+b+UhpRSlGgVSzJoFkdAozYdEmY0EXV9lChoBmgJaA9DCBqJ0Ag2rvu/lIaUUpRoFUsyaBZHQKM14H8CPp91fZQoaAZoCWgPQwjb/SrAd5v7v5SGlFKUaBVLMmgWR0CjNaUkOZssdX2UKGgGaAloD0MIoG6gwDv5/b+UhpRSlGgVSzJoFkdAoze+LNwBHXV9lChoBmgJaA9DCD6XqUnwxvu/lIaUUpRoFUsyaBZHQKM3gEIPbwl1fZQoaAZoCWgPQwiASSpTzEH+v5SGlFKUaBVLMmgWR0CjN0OYIBzWdX2UKGgGaAloD0MIPKQYINEE9r+UhpRSlGgVSzJoFkdAozcINZvDQHV9lChoBmgJaA9DCHcxzXSv0/2/lIaUUpRoFUsyaBZHQKM5BU6PsAx1fZQoaAZoCWgPQwgGTODW3fz9v5SGlFKUaBVLMmgWR0CjOMcxj8UFdX2UKGgGaAloD0MIHNE96xpt/L+UhpRSlGgVSzJoFkdAoziKcy31BnV9lChoBmgJaA9DCAnf+xu0V/2/lIaUUpRoFUsyaBZHQKM4TvCuU2V1fZQoaAZoCWgPQwjudr00RcD7v5SGlFKUaBVLMmgWR0CjOlOCwr1/dX2UKGgGaAloD0MIw/ARMSVS+L+UhpRSlGgVSzJoFkdAozoWDtgKGHV9lChoBmgJaA9DCESmfAiqRvy/lIaUUpRoFUsyaBZHQKM52ZgogFJ1fZQoaAZoCWgPQwgCui9ntqv4v5SGlFKUaBVLMmgWR0CjOZ41gpjMdX2UKGgGaAloD0MIZ5yGqMJf+L+UhpRSlGgVSzJoFkdAozug77sOXnV9lChoBmgJaA9DCNtv7URJSADAlIaUUpRoFUsyaBZHQKM7YtWdVed1fZQoaAZoCWgPQwgzpIriVRb9v5SGlFKUaBVLMmgWR0CjOyZMDfWMdX2UKGgGaAloD0MI68iRzsDI9r+UhpRSlGgVSzJoFkdAozrq8g6ltXV9lChoBmgJaA9DCMVztoDQ+vS/lIaUUpRoFUsyaBZHQKM8+JXQtz11fZQoaAZoCWgPQwhjtfl/1ZH9v5SGlFKUaBVLMmgWR0CjPLraEi+tdX2UKGgGaAloD0MIwi/186bi+7+UhpRSlGgVSzJoFkdAozx+OZLIxXV9lChoBmgJaA9DCJo+O+C6Yvi/lIaUUpRoFUsyaBZHQKM8RJUYKpl1fZQoaAZoCWgPQwhM/5JUptj6v5SGlFKUaBVLMmgWR0CjPkpEYwZgdX2UKGgGaAloD0MICOkpcoj4/b+UhpRSlGgVSzJoFkdAoz4MRFqi5HV9lChoBmgJaA9DCDqSy39IP/q/lIaUUpRoFUsyaBZHQKM9z6yB06p1fZQoaAZoCWgPQwg3+wPltv35v5SGlFKUaBVLMmgWR0CjPZRJNCZ4dX2UKGgGaAloD0MIM6g2OBH9/r+UhpRSlGgVSzJoFkdAoz+UJF9a2XV9lChoBmgJaA9DCKlOB7KeGvq/lIaUUpRoFUsyaBZHQKM/VbhWHUN1fZQoaAZoCWgPQwiy2ZHqO//2v5SGlFKUaBVLMmgWR0CjPxjhUBGQdX2UKGgGaAloD0MIyF2EKcol97+UhpRSlGgVSzJoFkdAoz7c85jpcHV9lChoBmgJaA9DCLmMmxpovva/lIaUUpRoFUsyaBZHQKNAb/zasZJ1fZQoaAZoCWgPQwhNZryt9Jr5v5SGlFKUaBVLMmgWR0CjQDFnyup0dX2UKGgGaAloD0MIGELO+/+4+b+UhpRSlGgVSzJoFkdAoz/0RYigTXV9lChoBmgJaA9DCAslk1M7w/m/lIaUUpRoFUsyaBZHQKM/uFwDNhV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (826 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.6364772487664596, "std_reward": 0.16781315449595863, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-25T16:29:32.235092"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26f2f0095e7f0c473cebb2a5bb9f547cba3d6c9da0851d49a6b18bc182f87fe0
|
3 |
+
size 2381
|