--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-action-ro results: [] --- # distilbert-action-ro This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1899 - Accuracy: 0.944 - Precision: 0.948 - Recall: 0.915 - F1: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----:| | No log | 1.0 | 89 | 0.3850 | 0.878 | 0.868 | 0.806 | 0.828 | | No log | 2.0 | 178 | 0.2336 | 0.94 | 0.918 | 0.902 | 0.908 | | No log | 3.0 | 267 | 0.1899 | 0.944 | 0.948 | 0.915 | 0.93 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3