--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-v2-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # hubert-base-ls960-v2-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7772 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2028 | 1.0 | 90 | 2.1088 | 0.42 | | 1.7214 | 2.0 | 180 | 1.6669 | 0.43 | | 1.6141 | 3.0 | 270 | 1.5335 | 0.54 | | 0.9971 | 4.0 | 360 | 1.1589 | 0.64 | | 1.0174 | 5.0 | 450 | 0.9587 | 0.64 | | 0.7295 | 6.0 | 540 | 0.8286 | 0.69 | | 0.8034 | 7.0 | 630 | 0.8001 | 0.76 | | 0.5709 | 8.0 | 720 | 0.9846 | 0.73 | | 0.4724 | 9.0 | 810 | 0.6829 | 0.79 | | 0.5161 | 10.0 | 900 | 0.9728 | 0.72 | | 0.4247 | 11.0 | 990 | 0.7745 | 0.78 | | 0.2696 | 12.0 | 1080 | 0.5330 | 0.87 | | 0.1403 | 13.0 | 1170 | 0.7202 | 0.83 | | 0.3434 | 14.0 | 1260 | 0.8506 | 0.82 | | 0.2754 | 15.0 | 1350 | 0.6707 | 0.85 | | 0.152 | 16.0 | 1440 | 0.8752 | 0.83 | | 0.233 | 17.0 | 1530 | 0.5098 | 0.9 | | 0.1169 | 18.0 | 1620 | 0.7069 | 0.86 | | 0.1667 | 19.0 | 1710 | 0.7760 | 0.84 | | 0.0691 | 20.0 | 1800 | 0.7772 | 0.84 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1