File size: 62,277 Bytes
13f83b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import os
import os.path as osp
import sys
import warnings
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from huggingface_hub import file_exists, repo_exists, snapshot_download
from huggingface_hub.utils import HFValidationError, validate_repo_id
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoTokenizer, BitsAndBytesConfig, PretrainedConfig,
PreTrainedModel, PreTrainedTokenizer)
from transformers.modeling_utils import ContextManagers, no_init_weights
from .configuration_llava import LlavaConfig
# from .constants import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN
# from .model.language_model.builder import build_llm_and_tokenizer
# from .model.multimodal_encoder.builder import build_vision_tower
# from .model.multimodal_projector.builder import build_mm_projector
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
# This file is modified from https://github.com/haotian-liu/LLaVA/
import torch
# from llava.model.multimodal_encoder.vision_encoder import (VisionTower, VisionTowerS2)
from transformers import CLIPImageProcessor, CLIPVisionModel, PretrainedConfig
class VisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = getattr(args, "mm_vision_select_layer", -2)
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
self.cfg_only = None
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == "patch":
image_features = image_features[:, 1:]
elif self.select_feature == "cls_patch":
image_features = image_features
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
def _maybe_resize_pos_embeds(
self,
model: PreTrainedModel,
image_processor,
resolution: int = -1,
interpolate_mode: str = "linear",
):
if resolution in [model.config.image_size, -1]:
return
print(
f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
)
embeddings = model.vision_model.embeddings
patch_size = embeddings.patch_size
num_new_tokens = int((resolution // patch_size) ** 2)
old_embeddings = embeddings.position_embedding
match interpolate_mode:
case "linear":
## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
import torch
import torch.nn as nn
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(
[old_embeddings.weight], modifier_rank=None
):
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
else:
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
new_embeddings = nn.Embedding(
num_new_tokens,
old_embedding_dim,
dtype=old_embeddings.weight.dtype,
device=old_embeddings.weight.device,
)
mapped_indices = (
torch.arange(num_new_tokens).to(old_embeddings.weight.device)
/ (num_new_tokens - 1)
* (old_num_tokens - 1)
)
floor_indices = torch.clamp(
mapped_indices.floor().long(), min=0, max=old_num_tokens - 1
)
ceil_indices = torch.clamp(
mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1
)
if is_deepspeed_zero3_enabled():
params = [old_embeddings.weight, new_embeddings.weight]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
interpolated_embeds = (mapped_indices - floor_indices)[
:, None
] * old_embeddings.weight.data[ceil_indices, :] + (
ceil_indices - mapped_indices
)[
:, None
] * old_embeddings.weight.data[
floor_indices, :
]
else:
interpolated_embeds = (mapped_indices - floor_indices)[
:, None
] * old_embeddings.weight.data[ceil_indices, :] + (
ceil_indices - mapped_indices
)[
:, None
] * old_embeddings.weight.data[
floor_indices, :
]
new_embeddings.weight.data = interpolated_embeds
case _:
raise NotImplementedError
if hasattr(old_embeddings, "_hf_hook"):
hook = old_embeddings._hf_hook
add_hook_to_module(new_embeddings, hook)
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
## update vision encoder's configurations
model.config.image_size = resolution
if hasattr(image_processor, "crop_size"):
# CLIP vision tower
image_processor.crop_size = resolution
else:
# SIGLIP vision tower
assert hasattr(image_processor, "size")
image_processor.size = {"height": resolution, "width": resolution}
## TODO define a '_reinitialize' method for VisionTower
embeddings.position_embedding = new_embeddings
embeddings.image_size = resolution
embeddings.num_patches = embeddings.num_positions = num_new_tokens
embeddings.position_ids = (
torch.arange(embeddings.num_positions)
.expand((1, -1))
.to(old_embeddings.weight.device)
)
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
output_hidden_states=True,
)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype),
output_hidden_states=True,
)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
class VisionTowerS2(VisionTower):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__(vision_tower, args, delay_load)
self.scales = list(map(int, args.s2_scales.split(",")))
self.scales.sort()
self.max_split_size = args.s2_max_split_size
@torch.no_grad()
def forward_feature(self, images):
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_feature = multiscale_forward(
self.forward_feature,
image.unsqueeze(0),
img_sizes=self.scales,
max_split_size=self.max_split_size,
)
image_features.append(image_feature)
else:
image_features = multiscale_forward(
self.forward_feature,
images,
img_sizes=self.scales,
max_split_size=self.max_split_size,
)
return image_features
@property
def hidden_size(self):
return self.config.hidden_size * len(self.scales)
class CLIPVisionTower(VisionTower):
def __init__(self, model_name_or_path: str, config: PretrainedConfig):
super().__init__(model_name_or_path, config)
self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path)
self.vision_tower = CLIPVisionModel.from_pretrained(
model_name_or_path, torch_dtype=eval(config.model_dtype)
)
self.is_loaded = True
class CLIPVisionTowerS2(VisionTowerS2):
def __init__(self, model_name_or_path: str, config: PretrainedConfig):
super().__init__(model_name_or_path, config)
self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path)
self.vision_tower = CLIPVisionModel.from_pretrained(
model_name_or_path, torch_dtype=eval(config.model_dtype)
)
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
self.image_processor.size["shortest_edge"] = self.scales[-1]
self.image_processor.crop_size["height"] = self.image_processor.crop_size[
"width"
] = self.scales[-1]
self.is_loaded = True
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": "identity"}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
class DownSampleBlock(nn.Module):
def forward(self, x):
vit_embeds = x
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.flat_square(vit_embeds)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square(self, x):
n, w, h, c = x.size()
if w % 2 == 1:
x = torch.concat(
[x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1
).contiguous()
n, w, h, c = x.size()
if h % 2 == 1:
x = torch.concat(
[x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2
).contiguous()
n, w, h, c = x.size()
x = x.view(n, w, int(h / 2), int(c * 2))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
return x
class MultimodalProjectorConfig(PretrainedConfig):
model_type = "v2l_projector"
def __init__(self, mm_projector_type: str = None, **kwargs):
super().__init__()
self.mm_projector_type = mm_projector_type
class MultimodalProjector(PreTrainedModel):
config_class = MultimodalProjectorConfig
def __init__(
self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig
):
super().__init__(mm_projector_cfg)
mm_projector_type = mm_projector_cfg.mm_projector_type
if mm_projector_type == "identity":
self.layers = IdentityMap()
elif mm_projector_type == "linear":
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
elif mm_projector_type == "mlp_downsample":
self.layers = nn.Sequential(
DownSampleBlock(),
nn.LayerNorm(config.mm_hidden_size * 4),
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
else:
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
self.layers = nn.Sequential(*modules)
else:
raise ValueError(f"Unknown projector type: {mm_projector_type}")
def forward(self, x, *args, **kwargs):
return self.layers(x)
def build_mm_projector(
model_type_or_path: str, config: PretrainedConfig
) -> PreTrainedModel:
if model_type_or_path is None:
return None
## load from pretrained model
if config.resume_path:
assert os.path.exists(
model_type_or_path
), f"Resume mm projector path {model_type_or_path} does not exist!"
return MultimodalProjector.from_pretrained(
model_type_or_path, config, torch_dtype=eval(config.model_dtype)
)
## build from scratch
else:
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
mm_projector = MultimodalProjector(mm_projector_cfg, config).to(
eval(config.model_dtype)
)
return mm_projector
def build_vision_tower(
model_name_or_path: str, config: PretrainedConfig
) -> PreTrainedModel:
## skip vision tower instantiation
if model_name_or_path is None:
return None
vision_tower_arch = None
if config.resume_path and "radio" not in model_name_or_path:
assert os.path.exists(
model_name_or_path
), f"Resume vision tower path {model_name_or_path} does not exist!"
vision_tower_cfg = AutoConfig.from_pretrained(
model_name_or_path, trust_remote_code=True
)
vision_tower_arch = vision_tower_cfg.architectures[0].lower()
vision_tower_name = (
vision_tower_arch if vision_tower_arch is not None else model_name_or_path
)
use_s2 = getattr(config, "s2", False)
if "intern" in vision_tower_name.lower():
if hasattr(config, "drop_path_rate"):
vision_tower = InternVisionTower(
model_name_or_path, config=config, drop_path_rate=config.drop_path_rate
)
else:
vision_tower = InternVisionTower(
model_name_or_path, config=config, drop_path_rate=0.0
)
elif "clip" in vision_tower_name:
if use_s2:
vision_tower = CLIPVisionTowerS2(model_name_or_path, config)
else:
vision_tower = CLIPVisionTower(model_name_or_path, config)
elif "siglip" in vision_tower_name:
if use_s2:
vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
else:
vision_tower = SiglipVisionTower(model_name_or_path, config)
else:
raise ValueError(f"Unknown vision tower: {model_name_or_path}")
config.mm_hidden_size = (
vision_tower.config.hidden_size if not use_s2 else vision_tower.hidden_size
)
return vision_tower
def has_tokenizer(repo_id_or_path: str) -> bool:
# Check if the tokenizer is in a local directory
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
return True
# Check if the tokenizer is in a Hugging Face Hub repo
try:
return repo_exists(repo_id_or_path) and file_exists(
repo_id_or_path, "tokenizer_config.json"
)
except HFValidationError:
return False
def context_length_extension(config):
orig_ctx_len = getattr(config, "max_position_embeddings", None)
model_max_length = getattr(config, "model_max_length", None)
if orig_ctx_len and model_max_length > orig_ctx_len:
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
return config
def build_llm_and_tokenizer(
model_name_or_path: str,
config: PretrainedConfig,
attn_implementation=None,
model_max_length=None,
*args,
**kwargs,
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
llm_cfg._attn_implementation = attn_implementation
llm_cfg.model_max_length = model_max_length
if model_max_length is not None:
context_length_extension(llm_cfg)
llm = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
config=llm_cfg,
torch_dtype=eval(config.model_dtype),
*args,
**kwargs,
)
# Locate the tokenizer.
llm_path = model_name_or_path
if not has_tokenizer(llm_path):
llm_path = osp.join(llm_path, "llm")
if not has_tokenizer(llm_path):
raise ValueError(f"Cannot find tokenizer in {llm_path}.")
# TODO(ligeng): use LLM class to judge to better compability.
try:
llm_arch = getattr(llm_cfg, "architectures")[0].lower()
except BaseException:
warnings.warn(
f'Cannot find LLM architecture, please check the "config.json" under "{llm_path}".'
)
if "mpt" in llm_arch:
tokenizer = AutoTokenizer.from_pretrained(
llm_path,
model_max_length=llm_cfg.model_max_length,
padding_side="right",
)
elif "yi" in llm_path or (
getattr(llm_cfg, "num_hidden_layers", -1) == 60
and getattr(llm_cfg, "num_attention_heads", -1) == 56
):
tokenizer = AutoTokenizer.from_pretrained(
llm_path,
model_max_length=llm_cfg.model_max_length,
padding_side="right",
use_fast=False,
)
else:
tokenizer = AutoTokenizer.from_pretrained(
llm_path,
model_max_length=llm_cfg.model_max_length,
padding_side="right",
use_fast=False,
legacy=False,
)
# TODO(ligeng): is this necessary for llava?
config.hidden_size = llm.config.hidden_size
return llm, tokenizer
def get_model_config(config):
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
root_path = config._name_or_path
else:
root_path = config.resume_path
# download from huggingface
if root_path is not None and not osp.exists(root_path):
try:
valid_hf_repo = repo_exists(root_path)
except HFValidationError as e:
valid_hf_repo = False
if valid_hf_repo:
root_path = snapshot_download(root_path)
return_list = []
for key in default_keys:
cfg = getattr(config, key, None)
if isinstance(cfg, dict):
try:
return_list.append(os.path.join(root_path, key[:-4]))
except:
raise ValueError(f"Cannot find resume path in config for {key}!")
elif isinstance(cfg, PretrainedConfig):
return_list.append(os.path.join(root_path, key[:-4]))
elif isinstance(cfg, str):
return_list.append(cfg)
return return_list
def is_mm_model(model_path):
"""
Check if the model at the given path is a visual language model.
Args:
model_path (str): The path to the model.
Returns:
bool: True if the model is an MM model, False otherwise.
"""
config = AutoConfig.from_pretrained(model_path)
architectures = config.architectures
for architecture in architectures:
if "llava" in architecture.lower():
return True
return False
def auto_upgrade(config):
cfg = AutoConfig.from_pretrained(config)
if "llava" in config and "llava" not in cfg.model_type:
assert cfg.model_type == "llama"
print(
"You are using newer LLaVA code base, while the checkpoint of v0 is from older code base."
)
print(
"You must upgrade the checkpoint to the new code base (this can be done automatically)."
)
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
if confirm.lower() in ["y", "yes"]:
print("Upgrading checkpoint...")
assert len(cfg.architectures) == 1
setattr(cfg.__class__, "model_type", "llava")
cfg.architectures[0] = "LlavaLlamaForCausalLM"
cfg.save_pretrained(config)
print("Checkpoint upgraded.")
else:
print("Checkpoint upgrade aborted.")
exit(1)
def get_pg_manager():
return None
# TODO decide whether should we use metaclass
class LlavaMetaModel(ABC):
def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs):
# TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation.
if (
hasattr(self, "llm")
or hasattr(self, "vision_tower")
or hasattr(self, "mm_projector")
):
# already initialized, skipped
return
model_dtype = getattr(config, "model_dtype", "torch.float16")
if not hasattr(config, "model_dtype"):
warnings.warn(
"model_dtype not found in config, defaulting to torch.float16."
)
config.model_dtype = model_dtype
cfgs = get_model_config(config)
if len(cfgs) == 3:
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
else:
raise ValueError(
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
)
# print("Before init in Config")
# if hasattr(config, "deepspeed") and "mics" in config.deepspeed:
# print("Using MiCS_Init")
# import deepspeed
# with deepspeed.zero.MiCS_Init():
# self.llm, self.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
# self.vision_tower = build_vision_tower(vision_tower_cfg, config)
# self.mm_projector = build_mm_projector(mm_projector_cfg, config)
# else:
self.llm, self.tokenizer = build_llm_and_tokenizer(
llm_cfg, config, *args, **kwargs
)
self.vision_tower = build_vision_tower(vision_tower_cfg, config)
self.mm_projector = build_mm_projector(mm_projector_cfg, config)
self.post_config()
self.is_loaded = True
assert (
self.llm is not None
or self.vision_tower is not None
or self.mm_projector is not None
), "At least one of the components must be instantiated."
@classmethod
def load_from_config(cls, model_path_or_config, *args, **kwargs):
pass
## FIXME we will use this function to load model in the future
@classmethod
def load_pretrained(cls, model_path_or_config, *args, **kwargs):
kwargs.pop("config", None)
if isinstance(model_path_or_config, str):
config = AutoConfig.from_pretrained(model_path_or_config)
elif isinstance(model_path_or_config, LlavaConfig):
config = model_path_or_config
else:
raise NotImplementedError(
f"wrong type, {type(model_path_or_config)} \
{isinstance(model_path_or_config, LlavaConfig)}"
)
model_dtype = getattr(config, "model_dtype", "torch.float16")
if not hasattr(config, "model_dtype"):
warnings.warn(
"model_dtype not found in config, defaulting to torch.float16."
)
config.model_dtype = model_dtype
cfgs = get_model_config(config)
if len(cfgs) == 3:
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
else:
raise ValueError(
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
)
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained")
init_context = [
no_init_weights(_enable=True),
]
# print("Before Init Context")
# if hasattr(config, "deepspeed") and "mics" in config.deepspeed:
# print("Using MiCS_Init")
# import deepspeed
# init_context.append(deepspeed.zero.MiCS_Init(config_dict_or_path=config.deepspeed))
with ContextManagers(init_context):
vlm = cls(config, *args, **kwargs)
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained finish")
if (
hasattr(vlm, "llm")
or hasattr(vlm, "vision_tower")
or hasattr(vlm, "mm_projector")
):
if vlm.is_loaded:
return vlm
vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(
llm_cfg, config, *args, **kwargs
)
vlm.vision_tower = build_vision_tower(vision_tower_cfg, config)
vlm.mm_projector = build_mm_projector(mm_projector_cfg, config)
self.post_config()
self.is_loaded = True
# FIXME(ligeng, yunhao): llm should never be none here.
assert (
vlm.llm is not None
or vlm.vision_tower is not None
or vlm.mm_projector is not None
), "At least one of the components must be instantiated."
return vlm
## FIXME we will use this function to save the model in the future
def save_pretrained(self, output_dir, state_dict=None):
if state_dict is None:
# other wise fetch from deepspeed
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
state_dict = self.state_dict()
if getattr(self, "tokenizer", None):
self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
if self.get_llm():
print(f"saving llm to {osp.join(output_dir, 'llm')}")
self.llm.config._name_or_path = osp.join(output_dir, "llm")
llm_state_dict = OrderedDict(
{k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}
)
self.llm.save_pretrained(
os.path.join(output_dir, "llm"), state_dict=llm_state_dict
)
self.config.llm_cfg = self.llm.config
if self.get_vision_tower():
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
self.vision_tower.config._name_or_path = osp.join(
output_dir, "vision_tower"
)
vision_tower_state_dict = OrderedDict(
{
k.split("vision_tower.vision_tower.")[-1]: v
for k, v in state_dict.items()
if "vision_tower" in k
}
)
self.vision_tower.vision_tower.save_pretrained(
os.path.join(output_dir, "vision_tower"),
state_dict=vision_tower_state_dict,
)
self.vision_tower.image_processor.save_pretrained(
os.path.join(output_dir, "vision_tower")
)
self.config.vision_tower_cfg = self.vision_tower.config
if hasattr(self.config.vision_tower_cfg, "auto_map"):
if "radio" not in self.get_vision_tower().__class__.__name__.lower():
delattr(self.config.vision_tower_cfg, "auto_map")
if self.get_mm_projector():
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
self.mm_projector.config._name_or_path = osp.join(
output_dir, "mm_projector"
)
mm_projector_state_dict = OrderedDict(
{
k.split("mm_projector.")[-1]: v
for k, v in state_dict.items()
if "mm_projector" in k
}
)
self.mm_projector.save_pretrained(
os.path.join(output_dir, "mm_projector"),
state_dict=mm_projector_state_dict,
)
self.config.mm_projector_cfg = self.mm_projector.config
## update and save top-level config
self.config._name_or_path = output_dir
self.config.architectures = [self.__class__.__name__]
self.config.save_pretrained(output_dir)
def get_llm(self):
llm = getattr(self, "llm", None)
if type(llm) is list:
llm = llm[0]
return llm
def get_lm_head(self):
lm_head = getattr(self.get_llm(), "lm_head", None)
return lm_head
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_mm_projector(self):
mm_projector = getattr(self, "mm_projector", None)
if type(mm_projector) is list:
mm_projector = mm_projector[0]
return mm_projector
def post_config(self):
self.training = self.get_llm().training
## configuration
if getattr(self.config, "llm_cfg", None) is None:
self.config.llm_cfg = self.llm.config
if getattr(self.config, "vision_tower_cfg", None) is None:
self.config.vision_tower_cfg = self.vision_tower.config
if getattr(self.config, "mm_projector_cfg", None) is None:
self.config.mm_projector_cfg = self.mm_projector.config
def freezed_module_patch(self):
"""
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
"""
if self.training:
if self.get_llm() and not getattr(
self.config, "tune_language_model", False
):
pass
# logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
if self.get_vision_tower() and not getattr(
self.config, "tune_vision_tower", False
):
self.get_vision_tower().eval()
if self.get_mm_projector() and not getattr(
self.config, "tune_mm_projector", False
):
self.get_mm_projector().eval()
def encode_images(self, images):
image_features = self.get_vision_tower()(images)
image_features = self.get_mm_projector()(image_features)
return image_features
## @yunhao: is there a better way to handle function call and attributes for llm?
## support beam search
def _temporary_reorder_cache(self, past_key_values, sorted_idx):
return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx)
def get_input_embeddings(self):
return self.get_llm().get_input_embeddings()
def get_output_embeddings(self):
return self.get_llm().get_output_embeddings()
def resize_token_embeddings(self, embed_size):
self.get_llm().resize_token_embeddings(embed_size)
class LlavaMetaForCausalLM(ABC):
"""This class is originally implemented by the LLaVA team and
modified by Haotian Tang and Jason Lu based on Ji Lin's implementation
to support multiple images and input packing."""
## TODO move the forward function here if there is no need to override it
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
):
# Handle sequence parallelism
PROCESS_GROUP_MANAGER = get_pg_manager()
if PROCESS_GROUP_MANAGER is None:
sp_degree = -1
sp_rank = -1
else:
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
vision_tower = self.get_vision_tower()
if (
vision_tower is None
or images is None
or (input_ids.shape[1] == 1 and PROCESS_GROUP_MANAGER is None)
):
if (
past_key_values is not None
and vision_tower is not None
and images is not None
and input_ids.shape[1] == 1
):
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat(
(
attention_mask,
torch.ones(
(
attention_mask.shape[0],
target_shape - attention_mask.shape[1],
),
dtype=attention_mask.dtype,
device=attention_mask.device,
),
),
dim=1,
)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return (
input_ids,
position_ids,
attention_mask,
past_key_values,
None,
labels,
)
# handle different image dtypes for packing
if type(images) is list:
images = torch.cat(images, dim=0)
elif images.ndim == 5: # batch_size x seq_len x image_channels
images = images.flatten(0, 1)
image_features = self.encode_images(images).to(self.device)
# Note (kentang-mit@): image start / end is not implemented here to support pretraining.
if getattr(self.config, "turn_mm_projector", False) and getattr(
self.config, "mm_use_im_start_end", False
):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask
input_ids_copy = input_ids.clone()
# kentang-mit@: Otherwise tokenizer out of bounds. Embeddings of image tokens will not be used.
input_ids_copy[input_ids_copy == IMAGE_TOKEN_INDEX] = 0
input_embeds = self.llm.model.embed_tokens(input_ids_copy)
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
input_embeds_1 = [
cur_input_embeds[cur_attention_mask]
for cur_input_embeds, cur_attention_mask in zip(
input_embeds, attention_mask
)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
# kentang-mit@: If some part of the model is executed in the loop, the the loop length needs to be a constant.
for batch_idx, cur_input_ids in enumerate(input_ids):
cur_input_ids = input_ids[batch_idx]
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[0]
cur_input_embeds_1 = input_embeds_1[batch_idx]
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
# kenang-mit@: we do not have placeholdr image for text-only data now.
continue
cur_input_embeds = input_embeds_1[batch_idx]
image_token_indices = (
[-1]
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
+ [cur_input_ids.shape[0]]
)
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
cur_input_embeds_no_im = []
for i in range(len(image_token_indices) - 1):
if (
sp_degree > 1 and i == 0 and sp_rank != 0
): # Handle sequence parallelism
cur_input_ids_noim.append(cur_input_ids[0:0])
cur_labels_noim.append(cur_labels[0:0])
cur_input_embeds_no_im.append(cur_input_embeds[0:0])
continue
cur_input_ids_noim.append(
cur_input_ids[
image_token_indices[i] + 1 : image_token_indices[i + 1]
]
)
cur_labels_noim.append(
cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]
)
cur_input_embeds_no_im.append(
cur_input_embeds[
image_token_indices[i] + 1 : image_token_indices[i + 1]
]
)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(
torch.full(
(cur_image_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(
self.llm.config, "tokenizer_model_max_length", None
)
if tokenizer_model_max_length is not None:
if any(len(x) > tokenizer_model_max_length for x in new_input_embeds):
warnings.warn("Inputs truncated!")
new_input_embeds = [
x[:tokenizer_model_max_length] for x in new_input_embeds
]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
# max_len = tokenizer_model_max_length
# print("Warning: using max_len as tokenizer_model_max_length")
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_input_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
if getattr(self.llm.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
# if sp_degree > 1: # Handle sequence parallelism
# if sp_rank not in self.global_seq_len:
# self.global_seq_len[sp_rank] = position_ids.shape[-1]
# else:
# assert self.global_seq_len[sp_rank] == position_ids.shape[-1]
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
# We will not use packing here when sequence parallelism is enabled.
if PROCESS_GROUP_MANAGER is not None:
return (
None,
_position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
)
return (
None,
position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
)
def repack_multimodal_data(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
):
# Handle sequence parallelism
PROCESS_GROUP_MANAGER = get_pg_manager()
# if PROCESS_GROUP_MANAGER is None:
# sp_degree = -1
# sp_rank = -1
# else:
# sp_degree = PROCESS_GROUP_MANAGER.sp_degree
# sp_rank = PROCESS_GROUP_MANAGER.sp_rank
# We will not use packing here when sequence parallelism is enabled.
# However, we do resharding here to ensure the sequence length is the same across all ranks.
if PROCESS_GROUP_MANAGER is not None:
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
sp_group = PROCESS_GROUP_MANAGER.ulysses_pg
bs, shard_seqlen = position_ids.shape
ulysess_seq_len = [
torch.zeros(1, dtype=torch.int64, device=position_ids.device)
for _ in range(sp_degree)
]
dist.all_gather(
ulysess_seq_len,
torch.tensor(shard_seqlen, device=position_ids.device),
group=sp_group,
)
# global_seq_len = torch.sum(torch.cat(ulysess_seq_len, dim=0)).item()
# Gather attention_mask and reshard it evenly
attention_mask_list = [
torch.zeros(
(bs, ulysess_seq_len[i]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
for i in range(sp_degree)
]
dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
effective_seqlen_list = [
attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)
]
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
global_attention_mask_list = []
for i in range(bs):
global_attention_mask_batch_list = []
for j in range(sp_degree):
global_attention_mask_batch_list.append(
attention_mask_list[j][i, : effective_seqlen_batch_list[i][j]]
)
global_attention_mask_list.append(
torch.cat(global_attention_mask_batch_list, dim=0)
)
global_attention_mask = torch.nn.utils.rnn.pad_sequence(
global_attention_mask_list, batch_first=True, padding_value=False
)
# Hyperparameters for sequence parallelism resharding
global_seq_len = global_attention_mask.shape[-1]
seq_len_sharded = global_seq_len // sp_degree
start_idx_reshard = seq_len_sharded * sp_rank
end_idx_reshard = (
start_idx_reshard + seq_len_sharded
if sp_rank < sp_degree - 1
else global_seq_len
)
# if sp_rank == 0:
# start_idx = 0
# else:
# start_idx = torch.sum(torch.cat(ulysess_seq_len[:sp_rank], dim=0)).item()
new_attention_mask = torch.narrow(
global_attention_mask,
1,
start_idx_reshard,
end_idx_reshard - start_idx_reshard,
)
# Gather position_ids and reshard it evenly
position_ids_list = [
torch.zeros(
(bs, ulysess_seq_len[i]),
dtype=position_ids.dtype,
device=position_ids.device,
)
for i in range(sp_degree)
]
dist.all_gather(position_ids_list, position_ids, group=sp_group)
global_position_ids_list = []
for i in range(bs):
global_position_ids_batch_list = []
for j in range(sp_degree):
global_position_ids_batch_list.append(
position_ids_list[j][i, : effective_seqlen_batch_list[i][j]]
)
global_position_ids_list.append(
torch.cat(global_position_ids_batch_list, dim=0)
)
global_position_ids = torch.nn.utils.rnn.pad_sequence(
global_position_ids_list, batch_first=True, padding_value=-1
)
new_position_ids = torch.narrow(
global_position_ids,
1,
start_idx_reshard,
end_idx_reshard - start_idx_reshard,
)
# Gather labels and reshard it evenly
labels_list = [
torch.zeros(
(bs, ulysess_seq_len[i]), dtype=labels.dtype, device=labels.device
)
for i in range(sp_degree)
]
dist.all_gather(labels_list, labels, group=sp_group)
global_labels_list = []
for i in range(bs):
global_labels_batch_list = []
for j in range(sp_degree):
global_labels_batch_list.append(
labels_list[j][i, : effective_seqlen_batch_list[i][j]]
)
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
global_labels = torch.nn.utils.rnn.pad_sequence(
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
)
new_labels = torch.narrow(
global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
# Gather inputs_embeds and reshard it evenly
# TODO: Fix the non-enough images.
# inputs_embeds_list = [torch.zeros((bs, ulysess_seq_len[i], inputs_embeds.shape[-1]), dtype=inputs_embeds.dtype, device=inputs_embeds.device, requires_grad=True) for i in range(sp_degree)]
# dist.all_gather(inputs_embeds_list, inputs_embeds, group=sp_group)
# global_inputs_embeds_list = []
# for i in range(bs):
# global_inputs_embeds_batch_list = []
# for j in range(sp_degree):
# global_inputs_embeds_batch_list.append(inputs_embeds_list[j][i, :effective_seqlen_batch_list[i][j]])
# global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
# global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(global_inputs_embeds_list, batch_first=True, padding_value=0)
# new_inputs_embeds = torch.narrow(global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
# Gather all hidden states and flaten them
ulysess_seq_len_cat = torch.cat(ulysess_seq_len, dim=0)
global_inputs_embeds_list = []
if sp_rank == 0:
original_start_id = 0
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
elif sp_rank == sp_degree - 1:
original_start_id = torch.sum(ulysess_seq_len_cat[:sp_rank]).item()
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
else:
original_start_id = torch.sum(ulysess_seq_len_cat[:sp_rank]).item()
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
all_inputs_embeds = torch.zeros(
bs,
torch.sum(ulysess_seq_len_cat),
inputs_embeds.shape[-1],
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
).contiguous()
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
dist.barrier(group=sp_group)
dist.all_reduce(all_inputs_embeds, group=sp_group)
dist.barrier(group=sp_group)
for i in range(bs):
global_inputs_embeds_batch_list = []
for j in range(sp_degree):
prev_len = torch.sum(ulysess_seq_len_cat[:j]).item() if j > 0 else 0
start_id = prev_len
end_id = prev_len + effective_seqlen_batch_list[i][j]
global_inputs_embeds_batch_list.append(
all_inputs_embeds[i, start_id:end_id]
)
global_inputs_embeds_list.append(
torch.cat(global_inputs_embeds_batch_list, dim=0)
)
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
global_inputs_embeds_list, batch_first=True, padding_value=0
)
new_inputs_embeds = torch.narrow(
global_inputs_embeds,
1,
start_idx_reshard,
end_idx_reshard - start_idx_reshard,
)
return (
None,
new_position_ids,
new_attention_mask,
past_key_values,
new_inputs_embeds,
new_labels,
None, # sorted_seqlens_in_batch set as None for sequence parallelism
)
# kentang-mit@: reorder and repack (reduce computation overhead)
# requires transformers replacement.
new_inputs_embeds = []
new_position_ids = []
new_labels = []
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
sorted_seqlens_in_batch, sorted_idx = torch.sort(
seqlens_in_batch, descending=True
)
max_seqlen = inputs_embeds.shape[1]
cur_inputs_embeds = []
cur_position_ids = []
cur_labels = []
cur_batch_len = 0
for i in range(len(sorted_seqlens_in_batch)):
cur_seqlen = sorted_seqlens_in_batch[i].item()
if cur_seqlen + cur_batch_len <= max_seqlen:
cur_batch_len += cur_seqlen
# each item: num_tokens x num_channels
# remove padding on-the-fly
cur_inputs_embeds.append(
inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]
)
cur_position_ids.append(
torch.arange(
cur_inputs_embeds[-1].shape[0],
device=cur_inputs_embeds[-1].device,
)
)
# each item: num_tokens
# remove padding on-the-fly
cur_labels.append(labels[sorted_idx[i]][attention_mask[sorted_idx[i]]])
else:
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
new_position_ids.append(torch.cat(cur_position_ids, 0))
new_labels.append(torch.cat(cur_labels, 0))
# The current batch is too long. We will start a new batch.
cur_batch_len = cur_seqlen
cur_inputs_embeds = [
inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]
]
cur_position_ids = [
torch.arange(
cur_inputs_embeds[-1].shape[0],
device=cur_inputs_embeds[-1].device,
)
]
cur_labels = [labels[sorted_idx[i]][attention_mask[sorted_idx[i]]]]
# Mask the first token in the labels for every sample
# cur_labels[-1][0] = IGNORE_INDEX
if len(cur_inputs_embeds):
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
new_position_ids.append(torch.cat(cur_position_ids, 0))
new_labels.append(torch.cat(cur_labels, 0))
new_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
new_inputs_embeds, batch_first=True, padding_value=self.llm.pad_token_id
)
new_position_ids = torch.nn.utils.rnn.pad_sequence(
new_position_ids, batch_first=True, padding_value=-1
)
new_labels = torch.nn.utils.rnn.pad_sequence(
new_labels, batch_first=True, padding_value=IGNORE_INDEX
)
## yunhao: it's currently a workaround to avoid errors for seq_len < 100
new_attention_mask = new_position_ids.ne(-1)
# sanity check
assert new_attention_mask.sum() == attention_mask.sum()
# Handle sequence parallelism: Calculate the position ids for sequence parallelism
# NOTE: This implementation only works for [<bos>, <img>, ..., <img>, <caption>] pattern
# if sp_degree > 1 and sp_rank > 0:
# cur_len = new_position_ids.shape[-1]
# if sp_rank < sp_degree - 1: # Intermediate ranks
# offset = cur_len * sp_rank + 1
# new_position_ids = new_position_ids + offset
# elif sp_rank == sp_degree - 1: # The last rank
# assert new_labels[0, -1] != IGNORE_INDEX, "The first sequence should be longest one."
# last_img_token_index = torch.where(new_labels[0] == IGNORE_INDEX)[0][-1]
# # print(f"last_img_token_index, {last_img_token_index}")
# # if sp_degree == 2: # Handle SP=2, because of bos_token
# # offset = last_img_token_index + 3
# # else:
# # offset = (last_img_token_index + 2) * sp_rank + 1
# offset = (last_img_token_index + 1) * sp_rank + 1
# offset_mask = new_position_ids != -1
# new_position_ids[offset_mask] += offset
# else:
# raise ValueError(f"sp_rank {sp_rank} is out of range {sp_degree}")
return (
None,
new_position_ids,
new_attention_mask,
past_key_values,
new_inputs_embeds,
new_labels,
sorted_seqlens_in_batch,
)
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
## TODO yunhao: handle cases for <im_st> <im_end>
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
)
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[
-num_new_tokens:
]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
)
elif model_args.mm_use_im_patch_token:
if model_args.mm_projector:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
|