File size: 45,235 Bytes
13f83b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
import inspect
# from .builder import build_llm_and_tokenizer, build_mm_projector, build_vision_tower
import os
import os.path as osp
import shutil
import warnings
from typing import List, Optional, Tuple, Union

# from .llava_llama import LlavaLlamaModel
# from llava.model import *
# from llava.model.utils import is_mm_model
import torch
import torch.nn as nn
from huggingface_hub import repo_exists, snapshot_download
from huggingface_hub.utils import HFValidationError, validate_repo_id
# from llava.model.multimodal_encoder.vision_encoder import (VisionTower,
#                                                            VisionTowerS2)
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
                          AutoTokenizer, BitsAndBytesConfig, GenerationConfig,
                          LlamaConfig, LlamaForCausalLM, PretrainedConfig,
                          PreTrainedModel, SiglipImageProcessor,
                          SiglipVisionModel)
from transformers.modeling_outputs import CausalLMOutputWithPast

from .configuration_llava import LlavaConfig  # , LlavaLlamaConfig
# from .llava_arch import LlavaMetaForCausalLM, LlavaMetaModel
from .utils import get_model_config

CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15

LOGDIR = "."

# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"

def is_deepspeed_zero3_enabled():
    return None

import torch
import torch.nn as nn
from transformers import (AutoConfig, AutoModel, PretrainedConfig,
                          PreTrainedModel)


class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": "identity"}


class SimpleResBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.pre_norm = nn.LayerNorm(channels)

        self.proj = nn.Sequential(
            nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
        )

    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)


class DownSampleBlock(nn.Module):
    def forward(self, x):
        vit_embeds = x
        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.flat_square(vit_embeds)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        return vit_embeds

    def flat_square(self, x):
        n, w, h, c = x.size()
        if w % 2 == 1:
            x = torch.concat(
                [x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1
            ).contiguous()
            n, w, h, c = x.size()
        if h % 2 == 1:
            x = torch.concat(
                [x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2
            ).contiguous()
            n, w, h, c = x.size()
        x = x.view(n, w, int(h / 2), int(c * 2))
        x = x.permute(0, 2, 1, 3).contiguous()
        x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
        return x


class MultimodalProjectorConfig(PretrainedConfig):
    model_type = "v2l_projector"

    def __init__(self, mm_projector_type: str = None, **kwargs):
        super().__init__()
        self.mm_projector_type = mm_projector_type


class MultimodalProjector(PreTrainedModel):
    config_class = MultimodalProjectorConfig

    def __init__(
        self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig
    ):
        super().__init__(mm_projector_cfg)
        mm_projector_type = mm_projector_cfg.mm_projector_type
        if mm_projector_type == "identity":
            self.layers = IdentityMap()
        elif mm_projector_type == "linear":
            self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
        elif mm_projector_type == "mlp_downsample":
            self.layers = nn.Sequential(
                DownSampleBlock(),
                nn.LayerNorm(config.mm_hidden_size * 4),
                nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
                nn.GELU(),
                nn.Linear(config.hidden_size, config.hidden_size),
            )
        else:
            mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
            if mlp_gelu_match:
                mlp_depth = int(mlp_gelu_match.group(1))
                modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
                for _ in range(1, mlp_depth):
                    modules.append(nn.GELU())
                    modules.append(nn.Linear(config.hidden_size, config.hidden_size))
                self.layers = nn.Sequential(*modules)
            else:
                raise ValueError(f"Unknown projector type: {mm_projector_type}")

    def forward(self, x, *args, **kwargs):
        return self.layers(x)
    
    
def build_mm_projector(
    model_type_or_path: str, config: PretrainedConfig
) -> PreTrainedModel:
    if model_type_or_path is None:
        return None

    ## load from pretrained model
    if config.resume_path:
        assert os.path.exists(
            model_type_or_path
        ), f"Resume mm projector path {model_type_or_path} does not exist!"
        return MultimodalProjector.from_pretrained(
            model_type_or_path, config, torch_dtype=eval(config.model_dtype)
        )
    ## build from scratch
    else:
        mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
        mm_projector = MultimodalProjector(mm_projector_cfg, config).to(
            eval(config.model_dtype)
        )
        return mm_projector


class VisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = getattr(args, "mm_vision_select_layer", -2)
        self.select_feature = getattr(args, "mm_vision_select_feature", "patch")

        self.cfg_only = None

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == "patch":
            image_features = image_features[:, 1:]
        elif self.select_feature == "cls_patch":
            image_features = image_features
        else:
            raise ValueError(f"Unexpected select feature: {self.select_feature}")
        return image_features

    def _maybe_resize_pos_embeds(
        self,
        model: PreTrainedModel,
        image_processor,
        resolution: int = -1,
        interpolate_mode: str = "linear",
    ):
        if resolution in [model.config.image_size, -1]:
            return
        print(
            f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
        )
        embeddings = model.vision_model.embeddings
        patch_size = embeddings.patch_size
        num_new_tokens = int((resolution // patch_size) ** 2)

        old_embeddings = embeddings.position_embedding
        match interpolate_mode:
            case "linear":
                ## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
                ## Step 2:  Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
                import torch
                import torch.nn as nn

              
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
                new_embeddings = nn.Embedding(
                    num_new_tokens,
                    old_embedding_dim,
                    dtype=old_embeddings.weight.dtype,
                    device=old_embeddings.weight.device,
                )
                mapped_indices = (
                    torch.arange(num_new_tokens).to(old_embeddings.weight.device)
                    / (num_new_tokens - 1)
                    * (old_num_tokens - 1)
                )
                floor_indices = torch.clamp(
                    mapped_indices.floor().long(), min=0, max=old_num_tokens - 1
                )
                ceil_indices = torch.clamp(
                    mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1
                )
                if is_deepspeed_zero3_enabled():
                    params = [old_embeddings.weight, new_embeddings.weight]
                    with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                        interpolated_embeds = (mapped_indices - floor_indices)[
                            :, None
                        ] * old_embeddings.weight.data[ceil_indices, :] + (
                            ceil_indices - mapped_indices
                        )[
                            :, None
                        ] * old_embeddings.weight.data[
                            floor_indices, :
                        ]
                else:
                    interpolated_embeds = (mapped_indices - floor_indices)[
                        :, None
                    ] * old_embeddings.weight.data[ceil_indices, :] + (
                        ceil_indices - mapped_indices
                    )[
                        :, None
                    ] * old_embeddings.weight.data[
                        floor_indices, :
                    ]
                new_embeddings.weight.data = interpolated_embeds
            case _:
                raise NotImplementedError

        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            # disable to inference
            # add_hook_to_module(new_embeddings, hook)
        new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
        ## update vision encoder's configurations
        model.config.image_size = resolution
        if hasattr(image_processor, "crop_size"):
            # CLIP vision tower
            image_processor.crop_size = resolution
        else:
            # SIGLIP vision tower
            assert hasattr(image_processor, "size")
            image_processor.size = {"height": resolution, "width": resolution}
        ## TODO define a '_reinitialize' method for VisionTower
        embeddings.position_embedding = new_embeddings
        embeddings.image_size = resolution
        embeddings.num_patches = embeddings.num_positions = num_new_tokens
        embeddings.position_ids = (
            torch.arange(embeddings.num_positions)
            .expand((1, -1))
            .to(old_embeddings.weight.device)
        )

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(
                    image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                    output_hidden_states=True,
                )
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True,
            )
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


class SiglipVisionTower(VisionTower):
    def __init__(
        self, model_name_or_path: str, config: PretrainedConfig, state_dict=None
    ):
        super().__init__(model_name_or_path, config)
        self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
        self.vision_tower = SiglipVisionModel.from_pretrained(
            # TODO(ligeng): why pass config here leading to errors?
            model_name_or_path,
            torch_dtype=eval(config.model_dtype),
            state_dict=state_dict,
        )
        self.is_loaded = True



def build_vision_tower(
    model_name_or_path: str, config: PretrainedConfig
) -> PreTrainedModel:
    ## skip vision tower instantiation
    if model_name_or_path is None:
        return None

    vision_tower_arch = None
    if config.resume_path and "radio" not in model_name_or_path:
        assert os.path.exists(
            model_name_or_path
        ), f"Resume vision tower path {model_name_or_path} does not exist!"
        vision_tower_cfg = AutoConfig.from_pretrained(
            model_name_or_path, trust_remote_code=True
        )
        vision_tower_arch = vision_tower_cfg.architectures[0].lower()
    vision_tower_name = (
        vision_tower_arch if vision_tower_arch is not None else model_name_or_path
    )

    use_s2 = getattr(config, "s2", False)

    if "siglip" in vision_tower_name:
        if use_s2:
            vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
        else:
            vision_tower = SiglipVisionTower(model_name_or_path, config)
    else:
        raise ValueError(f"Unknown vision tower: {model_name_or_path}")

    config.mm_hidden_size = (
        vision_tower.config.hidden_size if not use_s2 else vision_tower.hidden_size
    )
    return vision_tower



def has_tokenizer(repo_id_or_path: str) -> bool:
    # Check if the tokenizer is in a local directory
    if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
        return True

    # Check if the tokenizer is in a Hugging Face Hub repo
    try:
        return repo_exists(repo_id_or_path) and file_exists(
            repo_id_or_path, "tokenizer_config.json"
        )
    except HFValidationError:
        return False


def context_length_extension(config):
    orig_ctx_len = getattr(config, "max_position_embeddings", None)
    model_max_length = getattr(config, "model_max_length", None)
    if orig_ctx_len and model_max_length > orig_ctx_len:
        print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
        scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
        config.rope_scaling = {"type": "linear", "factor": scaling_factor}
    return config


def build_llm_and_tokenizer(
    model_name_or_path: str,
    config: PretrainedConfig,
    attn_implementation=None,
    model_max_length=None,
    *args,
    **kwargs,
):
    llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
    llm_cfg._attn_implementation = attn_implementation
    llm_cfg.model_max_length = model_max_length
    if model_max_length is not None:
        context_length_extension(llm_cfg)

    llm = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        config=llm_cfg,
        torch_dtype=eval(config.model_dtype),
        *args,
        **kwargs,
    )

    # Locate the tokenizer.
    llm_path = model_name_or_path
    if not has_tokenizer(llm_path):
        llm_path = osp.join(llm_path, "llm")
    if not has_tokenizer(llm_path):
        raise ValueError(f"Cannot find tokenizer in {llm_path}.")

    # TODO(ligeng): use LLM class to judge to better compability.
    try:
        llm_arch = getattr(llm_cfg, "architectures")[0].lower()
    except BaseException:
        warnings.warn(
            f'Cannot find LLM architecture, please check the "config.json" under "{llm_path}".'
        )

    if "mpt" in llm_arch:
        tokenizer = AutoTokenizer.from_pretrained(
            llm_path,
            model_max_length=llm_cfg.model_max_length,
            padding_side="right",
        )
    elif "yi" in llm_path or (
        getattr(llm_cfg, "num_hidden_layers", -1) == 60
        and getattr(llm_cfg, "num_attention_heads", -1) == 56
    ):
        tokenizer = AutoTokenizer.from_pretrained(
            llm_path,
            model_max_length=llm_cfg.model_max_length,
            padding_side="right",
            use_fast=False,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            llm_path,
            model_max_length=llm_cfg.model_max_length,
            padding_side="right",
            use_fast=False,
            legacy=False,
        )

    # TODO(ligeng): is this necessary for llava?
    config.hidden_size = llm.config.hidden_size
    return llm, tokenizer


def is_mm_model(model_path):
    """
    Check if the model at the given path is a visual language model.

    Args:
        model_path (str): The path to the model.

    Returns:
        bool: True if the model is an MM model, False otherwise.
    """
    config = AutoConfig.from_pretrained(model_path)
    architectures = config.architectures
    for architecture in architectures:
        if "llava" in architecture.lower():
            return True
    return False


def load_pretrained_model(
    model_path,
    model_name,
    model_base=None,
    load_8bit=False,
    load_4bit=False,
    device_map="auto",
    device="cuda",
    **kwargs,
):
    kwargs = {"device_map": device_map, **kwargs}

    if device != "cuda":
        kwargs["device_map"] = {"": device}

    if load_8bit:
        kwargs["load_in_8bit"] = True
    elif load_4bit:
        kwargs["load_in_4bit"] = True
        kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    else:
        kwargs["torch_dtype"] = torch.float16
        # kwargs["torch_dtype"] = torch.bfloat16

    if is_mm_model(model_path):
        # Load LLaVA model
        ## TODO @yunhao: mind fixing lora
        if "lora" in model_name.lower() and model_base is None:
            warnings.warn(
                "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
            )
        if (
            "lora" in model_name.lower() or "dora" in model_name.lower()
        ) and model_base is not None:
            lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
            print(lora_cfg_pretrained)
            print("Loading LLaVA from base model...")
            config = AutoConfig.from_pretrained(model_base)
            prepare_config_for_eval(config, kwargs)
            model = LlavaLlamaModel.from_pretrained(
                model_base, low_cpu_mem_usage=True, config=config, **kwargs
            )
            tokenizer = model.tokenizer
            token_num, tokem_dim = (
                model.llm.lm_head.out_features,
                model.llm.lm_head.in_features,
            )
            if model.llm.lm_head.weight.shape[0] != token_num:
                model.llm.lm_head.weight = torch.nn.Parameter(
                    torch.empty(
                        token_num, tokem_dim, device=model.device, dtype=model.dtype
                    )
                )
                model.llm.embed_tokens.weight = torch.nn.Parameter(
                    torch.empty(
                        token_num, tokem_dim, device=model.device, dtype=model.dtype
                    )
                )

            print("Loading additional LLaVA weights...")
            if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
                non_lora_trainables = torch.load(
                    os.path.join(model_path, "non_lora_trainables.bin"),
                    map_location="cpu",
                )
            else:
                # this is probably from HF Hub
                from huggingface_hub import hf_hub_download

                def load_from_hf(repo_id, filename, subfolder=None):
                    cache_file = hf_hub_download(
                        repo_id=repo_id, filename=filename, subfolder=subfolder
                    )
                    return torch.load(cache_file, map_location="cpu")

                non_lora_trainables = load_from_hf(
                    model_path, "non_lora_trainables.bin"
                )
            non_lora_trainables = {
                (k[11:] if k.startswith("base_model.") else k): v
                for k, v in non_lora_trainables.items()
            }
            if any(k.startswith("model.model.") for k in non_lora_trainables):
                non_lora_trainables = {
                    (k[6:] if k.startswith("model.") else k): v
                    for k, v in non_lora_trainables.items()
                }
            model.load_state_dict(non_lora_trainables, strict=False)

            from peft import PeftModel

            print("Loading LoRA weights...")
            model = PeftModel.from_pretrained(model, model_path)
            print("Merging LoRA weights...")
            model = model.merge_and_unload()
            print("Model is loaded...")
        ## TODO @yunhao: mind fixing this
        elif model_base is not None:
            # this may be mm projector only
            print("Loading LLaVA from base model...")
            cfg_pretrained = AutoConfig.from_pretrained(
                model_path, trust_remote_code=True
            )
            mm_config_wrapper(config, kwargs)
            if "mpt" in model_name.lower():
                if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")):
                    shutil.copyfile(
                        os.path.join(model_base, "configuration_mpt.py"),
                        os.path.join(model_path, "configuration_mpt.py"),
                    )
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
                model = LlavaMPTForCausalLM.from_pretrained(
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(
                    model_base, use_fast=False, legacy=False
                )
                model = LlavaLlamaForCausalLM.from_pretrained(
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
                )
        else:
            config = AutoConfig.from_pretrained(model_path)
            config.resume_path = model_path
            prepare_config_for_eval(config, kwargs)
            if "mpt" in model_name.lower():
                model = LlavaMPTForCausalLM.from_pretrained(
                    model_path, config=config, low_cpu_mem_usage=True, **kwargs
                )
            elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
                model = LlavaMistralForCausalLM.from_pretrained(
                    model_path, config=config, low_cpu_mem_usage=True, **kwargs
                )
            elif "gemma" in model_name.lower():
                model = LlavaGemmaForCausalLM.from_pretrained(
                    model_path, config=config, low_cpu_mem_usage=True, **kwargs
                )
            else:
                # kentang-mit@: llama-2 model
                # config._attn_implementation = "flash_attention_2"
                model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs)
            tokenizer = model.tokenizer
    else:
        # Load language model
        if model_base is not None:
            # PEFT model
            from peft import PeftModel

            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(
                model_base, low_cpu_mem_usage=True, **kwargs
            )
            print(f"Loading LoRA weights from {model_path}")
            model = PeftModel.from_pretrained(model, model_path)
            print(f"Merging weights")
            model = model.merge_and_unload()
            print("Convert to FP16...")
            model.to(torch.float16)
        else:
            if "mpt" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = AutoModelForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(
                    model_path, use_fast=False, legacy=False
                )
                model = AutoModelForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, **kwargs
                )
    model.eval()
    image_processor = None
    if is_mm_model(model_path):
        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens(
                [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
            )
        model.resize_token_embeddings(len(tokenizer))
        vision_tower = model.get_vision_tower()
        vision_tower.to(device=device, dtype=torch.float16)
        # vision_tower.to(device=device, dtype=torch.bfloat16)
        mm_projector = model.get_mm_projector()
        mm_projector.to(device=device, dtype=torch.float16)
        # mm_projector.to(device=device, dtype=torch.bfloat16)
        image_processor = vision_tower.image_processor

    if hasattr(model.llm.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len


def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"):
    target_model = f"{model_name}{suffix}"
    target_cfg = getattr(config, target_model, None)

    if isinstance(target_cfg, str):
        return target_cfg
    elif isinstance(target_cfg, dict):
        return target_cfg["architectures"][0]
    else:
        raise ValueError(f"Invalid {target_model} configuration!")


def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
    try:
        # compatible with deprecated config convention
        if getattr(config, "vision_tower_cfg", None) is None:
            config.vision_tower_cfg = config.mm_vision_tower
    except AttributeError:
        raise ValueError(
            f"Invalid configuration! Cannot find vision_tower in config:\n{config}"
        )

    config.model_dtype = kwargs.pop("torch_dtype").__str__()
    # siglip does not support device_map = "auto"
    vision_tower_name = parse_model_name_or_path(config, "vision_tower")
    if "siglip" in vision_tower_name.lower():
        kwargs["device_map"] = "cuda"


class LlavaLlamaConfig(LlavaConfig):
    model_type = "llava_llama"


# class LlavaLlamaModel(PreTrainedModel):
#     config_class = LlavaLlamaConfig
#     main_input_name = "input_embeds"
#     supports_gradient_checkpointing = True

#     @classmethod
#     def from_pretrained(
#         cls,
#         pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
#         *model_args,
#         config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
#         cache_dir: Optional[Union[str, os.PathLike]] = None,
#         ignore_mismatched_sizes: bool = False,
#         force_download: bool = False,
#         local_files_only: bool = False,
#         token: Optional[Union[str, bool]] = None,
#         revision: str = "main",
#         use_safetensors: bool = None,
#         **kwargs,
#     ):
#         if hasattr(cls, "load_pretrained"):
#             return cls.load_pretrained(
#                 pretrained_model_name_or_path,
#                 *model_args,
#                 config=config,
#                 cache_dir=cache_dir,
#                 ignore_mismatched_sizes=ignore_mismatched_sizes,
#                 force_download=force_download,
#                 local_files_only=local_files_only,
#                 token=token,
#                 revision=revision,
#                 use_safetensors=use_safetensors,
#                 **kwargs,
#             )
#         return None

from abc import ABC, abstractmethod
from collections import OrderedDict


class LlavaMetaModel(ABC):
    def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs):
        # TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation.
        if (
            hasattr(self, "llm")
            or hasattr(self, "vision_tower")
            or hasattr(self, "mm_projector")
        ):
            # already initialized, skipped
            return

        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn(
                "model_dtype not found in config, defaulting to torch.float16."
            )
            config.model_dtype = model_dtype

        cfgs = get_model_config(config)
        if len(cfgs) == 3:
            llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
        else:
            raise ValueError(
                "`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
            )

        self.llm, self.tokenizer = build_llm_and_tokenizer(
            llm_cfg, config, *args, **kwargs
        )
        self.vision_tower = build_vision_tower(vision_tower_cfg, config)
        self.mm_projector = build_mm_projector(mm_projector_cfg, config)

        self.post_config()
        self.is_loaded = True

        assert (
            self.llm is not None
            or self.vision_tower is not None
            or self.mm_projector is not None
        ), "At least one of the components must be instantiated."

    @classmethod
    def load_from_config(cls, model_path_or_config, *args, **kwargs):
        pass

    ## FIXME we will use this function to load model in the future
    @classmethod
    def load_pretrained(cls, model_path_or_config, *args, **kwargs):
        kwargs.pop("config", None)

        if isinstance(model_path_or_config, str):
            config = AutoConfig.from_pretrained(model_path_or_config)
        elif isinstance(model_path_or_config, LlavaConfig):
            config = model_path_or_config
        else:
            raise NotImplementedError(
                f"wrong type, {type(model_path_or_config)} \
                                      {isinstance(model_path_or_config, LlavaConfig)}"
            )

        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn(
                "model_dtype not found in config, defaulting to torch.float16."
            )
            config.model_dtype = model_dtype

        cfgs = get_model_config(config)
        if len(cfgs) == 3:
            llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
        else:
            raise ValueError(
                "`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
            )

        vlm = cls(config, *args, **kwargs)
        # print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained finish")

        if (
            hasattr(vlm, "llm")
            or hasattr(vlm, "vision_tower")
            or hasattr(vlm, "mm_projector")
        ):
            if vlm.is_loaded:
                return vlm

        vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(
            llm_cfg, config, *args, **kwargs
        )
        vlm.vision_tower = build_vision_tower(vision_tower_cfg, config)
        vlm.mm_projector = build_mm_projector(mm_projector_cfg, config)

        cls.post_config()
        cls.is_loaded = True

        # FIXME(ligeng, yunhao): llm should never be none here.
        assert (
            vlm.llm is not None
            or vlm.vision_tower is not None
            or vlm.mm_projector is not None
        ), "At least one of the components must be instantiated."
        return vlm

    ## FIXME we will use this function to save the model in the future
    def save_pretrained(self, output_dir, state_dict=None):
        if state_dict is None:
            # other wise fetch from deepspeed
            # state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
            state_dict = self.state_dict()

        if getattr(self, "tokenizer", None):
            self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))

        if self.get_llm():
            print(f"saving llm to {osp.join(output_dir, 'llm')}")
            self.llm.config._name_or_path = osp.join(output_dir, "llm")
            llm_state_dict = OrderedDict(
                {k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}
            )
            self.llm.save_pretrained(
                os.path.join(output_dir, "llm"), state_dict=llm_state_dict
            )
            self.config.llm_cfg = self.llm.config

        if self.get_vision_tower():
            print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
            self.vision_tower.config._name_or_path = osp.join(
                output_dir, "vision_tower"
            )
            vision_tower_state_dict = OrderedDict(
                {
                    k.split("vision_tower.vision_tower.")[-1]: v
                    for k, v in state_dict.items()
                    if "vision_tower" in k
                }
            )
            self.vision_tower.vision_tower.save_pretrained(
                os.path.join(output_dir, "vision_tower"),
                state_dict=vision_tower_state_dict,
            )
            self.vision_tower.image_processor.save_pretrained(
                os.path.join(output_dir, "vision_tower")
            )
            self.config.vision_tower_cfg = self.vision_tower.config
            if hasattr(self.config.vision_tower_cfg, "auto_map"):
                if "radio" not in self.get_vision_tower().__class__.__name__.lower():
                    delattr(self.config.vision_tower_cfg, "auto_map")

        if self.get_mm_projector():
            print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
            self.mm_projector.config._name_or_path = osp.join(
                output_dir, "mm_projector"
            )
            mm_projector_state_dict = OrderedDict(
                {
                    k.split("mm_projector.")[-1]: v
                    for k, v in state_dict.items()
                    if "mm_projector" in k
                }
            )
            self.mm_projector.save_pretrained(
                os.path.join(output_dir, "mm_projector"),
                state_dict=mm_projector_state_dict,
            )
            self.config.mm_projector_cfg = self.mm_projector.config
        ## update and save top-level config
        self.config._name_or_path = output_dir
        self.config.architectures = [self.__class__.__name__]
        self.config.save_pretrained(output_dir)

    def get_llm(self):
        llm = getattr(self, "llm", None)
        if type(llm) is list:
            llm = llm[0]
        return llm

    def get_lm_head(self):
        lm_head = getattr(self.get_llm(), "lm_head", None)
        return lm_head

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_mm_projector(self):
        mm_projector = getattr(self, "mm_projector", None)
        if type(mm_projector) is list:
            mm_projector = mm_projector[0]
        return mm_projector

    def post_config(self):
        self.training = self.get_llm().training
        ## configuration
        if getattr(self.config, "llm_cfg", None) is None:
            self.config.llm_cfg = self.llm.config
        if getattr(self.config, "vision_tower_cfg", None) is None:
            self.config.vision_tower_cfg = self.vision_tower.config
        if getattr(self.config, "mm_projector_cfg", None) is None:
            self.config.mm_projector_cfg = self.mm_projector.config

    def freezed_module_patch(self):
        """
        Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
        """
        if self.training:
            if self.get_llm() and not getattr(
                self.config, "tune_language_model", False
            ):
                pass
                # logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
            if self.get_vision_tower() and not getattr(
                self.config, "tune_vision_tower", False
            ):
                self.get_vision_tower().eval()
            if self.get_mm_projector() and not getattr(
                self.config, "tune_mm_projector", False
            ):
                self.get_mm_projector().eval()

    def encode_images(self, images):
        image_features = self.get_vision_tower()(images)
        image_features = self.get_mm_projector()(image_features)
        return image_features

    ## @yunhao: is there a better way to handle function call and attributes for llm?
    ## support beam search
    def _temporary_reorder_cache(self, past_key_values, sorted_idx):
        return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx)

    def get_input_embeddings(self):
        return self.get_llm().get_input_embeddings()

    def get_output_embeddings(self):
        return self.get_llm().get_output_embeddings()

    def resize_token_embeddings(self, embed_size):
        self.get_llm().resize_token_embeddings(embed_size)


# ## FIXME we will follow the convention to add a new class for CausalLM in the future
class LlavaLlamaModel(LlavaMetaModel, PreTrainedModel):
    config_class = LlavaLlamaConfig
    main_input_name = "input_embeds"
    supports_gradient_checkpointing = True

    def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None:
        super().__init__(config)
        return self.init_vlm(config=config, *args, **kwargs)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
        if hasattr(cls, "load_pretrained"):
            return cls.load_pretrained(
                pretrained_model_name_or_path,
                *model_args,
                config=config,
                cache_dir=cache_dir,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                force_download=force_download,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                use_safetensors=use_safetensors,
                **kwargs,
            )
        return super(LlavaLlamaModel).from_pretrained(
            pretrained_model_name_or_path,
            *model_args,
            config=config,
            cache_dir=cache_dir,
            ignore_mismatched_sizes=ignore_mismatched_sizes,
            force_download=force_download,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            use_safetensors=use_safetensors,
            **kwargs,
        )

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        images: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        seqlens_in_batch: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        dpo_forward: bool = False,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        self.freezed_module_patch()
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids, position_ids, attention_mask, past_key_values, labels, images
            )

        support_packing = (
            "seqlens_in_batch" in inspect.signature(self.llm.forward).parameters
        )

        if self.training and support_packing and not dpo_forward:
            (
                _,
                new_position_ids,
                new_attention_mask,
                _,
                new_inputs_embeds,
                new_labels,
                sorted_seqlens_in_batch,
            ) = self.repack_multimodal_data(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            )
            if sorted_seqlens_in_batch is None:
                sorted_seqlens_in_batch = seqlens_in_batch
            new_input_ids = None
            past_key_values = None
        else:
            new_attention_mask = attention_mask
            new_position_ids = position_ids
            new_inputs_embeds = inputs_embeds
            new_labels = labels
            sorted_seqlens_in_batch = attention_mask.sum(-1).int()
            new_input_ids = input_ids

        if support_packing:
            outputs = self.llm.forward(
                input_ids=new_input_ids,
                attention_mask=new_attention_mask,
                position_ids=new_position_ids,
                past_key_values=past_key_values,
                inputs_embeds=new_inputs_embeds,
                labels=new_labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                seqlens_in_batch=sorted_seqlens_in_batch,
            )
        else:
            outputs = self.llm.forward(
                input_ids=new_input_ids,
                attention_mask=new_attention_mask,
                position_ids=new_position_ids,
                past_key_values=past_key_values,
                inputs_embeds=new_inputs_embeds,
                labels=new_labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        if dpo_forward:
            return outputs.logits, new_labels
        return outputs

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.FloatTensor] = None,
        images: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        **generation_kwargs,
    ):
        if images is not None:
            (
                _,
                _,
                attention_mask,
                _,
                inputs_embeds,
                _,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids, None, attention_mask, None, None, images
            )
        else:
            inputs_embeds = self.get_input_embeddings()(input_ids)
        inputs_embeds = inputs_embeds.to(self.dtype)

        outputs = self.llm.generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **generation_kwargs,
        )
        return outputs


# AutoConfig.register("llava_llama", LlavaLlamaConfig)
# AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel)