|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import shutil |
|
import warnings |
|
|
|
import torch |
|
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, PretrainedConfig) |
|
|
|
from .llava_llama import LlavaLlamaModel |
|
|
|
|
|
|
|
|
|
CONTROLLER_HEART_BEAT_EXPIRATION = 30 |
|
WORKER_HEART_BEAT_INTERVAL = 15 |
|
|
|
LOGDIR = "." |
|
|
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
IMAGE_PLACEHOLDER = "<image-placeholder>" |
|
|
|
|
|
def is_mm_model(model_path): |
|
""" |
|
Check if the model at the given path is a visual language model. |
|
|
|
Args: |
|
model_path (str): The path to the model. |
|
|
|
Returns: |
|
bool: True if the model is an MM model, False otherwise. |
|
""" |
|
config = AutoConfig.from_pretrained(model_path) |
|
architectures = config.architectures |
|
for architecture in architectures: |
|
if "llava" in architecture.lower(): |
|
return True |
|
return False |
|
|
|
|
|
def load_pretrained_model( |
|
model_path, |
|
model_name, |
|
model_base=None, |
|
load_8bit=False, |
|
load_4bit=False, |
|
device_map="auto", |
|
device="cuda", |
|
**kwargs, |
|
): |
|
kwargs = {"device_map": device_map, **kwargs} |
|
|
|
if device != "cuda": |
|
kwargs["device_map"] = {"": device} |
|
|
|
if load_8bit: |
|
kwargs["load_in_8bit"] = True |
|
elif load_4bit: |
|
kwargs["load_in_4bit"] = True |
|
kwargs["quantization_config"] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
) |
|
else: |
|
kwargs["torch_dtype"] = torch.float16 |
|
|
|
|
|
if is_mm_model(model_path): |
|
|
|
|
|
if "lora" in model_name.lower() and model_base is None: |
|
warnings.warn( |
|
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." |
|
) |
|
if ( |
|
"lora" in model_name.lower() or "dora" in model_name.lower() |
|
) and model_base is not None: |
|
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
print(lora_cfg_pretrained) |
|
print("Loading LLaVA from base model...") |
|
config = AutoConfig.from_pretrained(model_base) |
|
prepare_config_for_eval(config, kwargs) |
|
model = LlavaLlamaModel.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, config=config, **kwargs |
|
) |
|
tokenizer = model.tokenizer |
|
token_num, tokem_dim = ( |
|
model.llm.lm_head.out_features, |
|
model.llm.lm_head.in_features, |
|
) |
|
if model.llm.lm_head.weight.shape[0] != token_num: |
|
model.llm.lm_head.weight = torch.nn.Parameter( |
|
torch.empty( |
|
token_num, tokem_dim, device=model.device, dtype=model.dtype |
|
) |
|
) |
|
model.llm.embed_tokens.weight = torch.nn.Parameter( |
|
torch.empty( |
|
token_num, tokem_dim, device=model.device, dtype=model.dtype |
|
) |
|
) |
|
|
|
print("Loading additional LLaVA weights...") |
|
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): |
|
non_lora_trainables = torch.load( |
|
os.path.join(model_path, "non_lora_trainables.bin"), |
|
map_location="cpu", |
|
) |
|
else: |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
def load_from_hf(repo_id, filename, subfolder=None): |
|
cache_file = hf_hub_download( |
|
repo_id=repo_id, filename=filename, subfolder=subfolder |
|
) |
|
return torch.load(cache_file, map_location="cpu") |
|
|
|
non_lora_trainables = load_from_hf( |
|
model_path, "non_lora_trainables.bin" |
|
) |
|
non_lora_trainables = { |
|
(k[11:] if k.startswith("base_model.") else k): v |
|
for k, v in non_lora_trainables.items() |
|
} |
|
if any(k.startswith("model.model.") for k in non_lora_trainables): |
|
non_lora_trainables = { |
|
(k[6:] if k.startswith("model.") else k): v |
|
for k, v in non_lora_trainables.items() |
|
} |
|
model.load_state_dict(non_lora_trainables, strict=False) |
|
|
|
from peft import PeftModel |
|
|
|
print("Loading LoRA weights...") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print("Merging LoRA weights...") |
|
model = model.merge_and_unload() |
|
print("Model is loaded...") |
|
|
|
elif model_base is not None: |
|
|
|
print("Loading LLaVA from base model...") |
|
cfg_pretrained = AutoConfig.from_pretrained( |
|
model_path, trust_remote_code=True |
|
) |
|
mm_config_wrapper(config, kwargs) |
|
if "mpt" in model_name.lower(): |
|
if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")): |
|
shutil.copyfile( |
|
os.path.join(model_base, "configuration_mpt.py"), |
|
os.path.join(model_path, "configuration_mpt.py"), |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) |
|
model = LlavaMPTForCausalLM.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs |
|
) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_base, use_fast=False, legacy=False |
|
) |
|
model = LlavaLlamaForCausalLM.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs |
|
) |
|
else: |
|
config = AutoConfig.from_pretrained(model_path) |
|
config.resume_path = model_path |
|
prepare_config_for_eval(config, kwargs) |
|
if "mpt" in model_name.lower(): |
|
model = LlavaMPTForCausalLM.from_pretrained( |
|
model_path, config=config, low_cpu_mem_usage=True, **kwargs |
|
) |
|
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower(): |
|
model = LlavaMistralForCausalLM.from_pretrained( |
|
model_path, config=config, low_cpu_mem_usage=True, **kwargs |
|
) |
|
elif "gemma" in model_name.lower(): |
|
model = LlavaGemmaForCausalLM.from_pretrained( |
|
model_path, config=config, low_cpu_mem_usage=True, **kwargs |
|
) |
|
else: |
|
|
|
|
|
model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs) |
|
tokenizer = model.tokenizer |
|
else: |
|
|
|
if model_base is not None: |
|
|
|
from peft import PeftModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_base, low_cpu_mem_usage=True, **kwargs |
|
) |
|
print(f"Loading LoRA weights from {model_path}") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print(f"Merging weights") |
|
model = model.merge_and_unload() |
|
print("Convert to FP16...") |
|
model.to(torch.float16) |
|
else: |
|
if "mpt" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs |
|
) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=False, legacy=False |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, **kwargs |
|
) |
|
model.eval() |
|
image_processor = None |
|
if is_mm_model(model_path): |
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens( |
|
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True |
|
) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
vision_tower = model.get_vision_tower() |
|
vision_tower.to(device=device, dtype=torch.float16) |
|
|
|
mm_projector = model.get_mm_projector() |
|
mm_projector.to(device=device, dtype=torch.float16) |
|
|
|
image_processor = vision_tower.image_processor |
|
|
|
if hasattr(model.llm.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
|
|
return tokenizer, model, image_processor, context_len |
|
|
|
|
|
def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"): |
|
target_model = f"{model_name}{suffix}" |
|
target_cfg = getattr(config, target_model, None) |
|
|
|
if isinstance(target_cfg, str): |
|
return target_cfg |
|
elif isinstance(target_cfg, dict): |
|
return target_cfg["architectures"][0] |
|
else: |
|
raise ValueError(f"Invalid {target_model} configuration!") |
|
|
|
|
|
def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict): |
|
try: |
|
|
|
if getattr(config, "vision_tower_cfg", None) is None: |
|
config.vision_tower_cfg = config.mm_vision_tower |
|
except AttributeError: |
|
raise ValueError( |
|
f"Invalid configuration! Cannot find vision_tower in config:\n{config}" |
|
) |
|
|
|
config.model_dtype = kwargs.pop("torch_dtype").__str__() |
|
|
|
vision_tower_name = parse_model_name_or_path(config, "vision_tower") |
|
if "siglip" in vision_tower_name.lower(): |
|
kwargs["device_map"] = "cuda" |
|
|