VILA15_3b / llava_arch.py
Ligeng-Zhu's picture
Upload files with huggingface_hub
13f83b4 verified
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import os
import os.path as osp
import sys
import warnings
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from huggingface_hub import file_exists, repo_exists, snapshot_download
from huggingface_hub.utils import HFValidationError, validate_repo_id
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoTokenizer, BitsAndBytesConfig, PretrainedConfig,
PreTrainedModel, PreTrainedTokenizer)
from transformers.modeling_utils import ContextManagers, no_init_weights
from .configuration_llava import LlavaConfig
# from .constants import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN
# from .model.language_model.builder import build_llm_and_tokenizer
# from .model.multimodal_encoder.builder import build_vision_tower
# from .model.multimodal_projector.builder import build_mm_projector
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
# This file is modified from https://github.com/haotian-liu/LLaVA/
import torch
# from llava.model.multimodal_encoder.vision_encoder import (VisionTower, VisionTowerS2)
from transformers import CLIPImageProcessor, CLIPVisionModel, PretrainedConfig
class VisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = getattr(args, "mm_vision_select_layer", -2)
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
self.cfg_only = None
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == "patch":
image_features = image_features[:, 1:]
elif self.select_feature == "cls_patch":
image_features = image_features
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
def _maybe_resize_pos_embeds(
self,
model: PreTrainedModel,
image_processor,
resolution: int = -1,
interpolate_mode: str = "linear",
):
if resolution in [model.config.image_size, -1]:
return
print(
f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
)
embeddings = model.vision_model.embeddings
patch_size = embeddings.patch_size
num_new_tokens = int((resolution // patch_size) ** 2)
old_embeddings = embeddings.position_embedding
match interpolate_mode:
case "linear":
## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
import torch
import torch.nn as nn
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(
[old_embeddings.weight], modifier_rank=None
):
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
else:
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
new_embeddings = nn.Embedding(
num_new_tokens,
old_embedding_dim,
dtype=old_embeddings.weight.dtype,
device=old_embeddings.weight.device,
)
mapped_indices = (
torch.arange(num_new_tokens).to(old_embeddings.weight.device)
/ (num_new_tokens - 1)
* (old_num_tokens - 1)
)
floor_indices = torch.clamp(
mapped_indices.floor().long(), min=0, max=old_num_tokens - 1
)
ceil_indices = torch.clamp(
mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1
)
if is_deepspeed_zero3_enabled():
params = [old_embeddings.weight, new_embeddings.weight]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
interpolated_embeds = (mapped_indices - floor_indices)[
:, None
] * old_embeddings.weight.data[ceil_indices, :] + (
ceil_indices - mapped_indices
)[
:, None
] * old_embeddings.weight.data[
floor_indices, :
]
else:
interpolated_embeds = (mapped_indices - floor_indices)[
:, None
] * old_embeddings.weight.data[ceil_indices, :] + (
ceil_indices - mapped_indices
)[
:, None
] * old_embeddings.weight.data[
floor_indices, :
]
new_embeddings.weight.data = interpolated_embeds
case _:
raise NotImplementedError
if hasattr(old_embeddings, "_hf_hook"):
hook = old_embeddings._hf_hook
add_hook_to_module(new_embeddings, hook)
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
## update vision encoder's configurations
model.config.image_size = resolution
if hasattr(image_processor, "crop_size"):
# CLIP vision tower
image_processor.crop_size = resolution
else:
# SIGLIP vision tower
assert hasattr(image_processor, "size")
image_processor.size = {"height": resolution, "width": resolution}
## TODO define a '_reinitialize' method for VisionTower
embeddings.position_embedding = new_embeddings
embeddings.image_size = resolution
embeddings.num_patches = embeddings.num_positions = num_new_tokens
embeddings.position_ids = (
torch.arange(embeddings.num_positions)
.expand((1, -1))
.to(old_embeddings.weight.device)
)
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
output_hidden_states=True,
)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype),
output_hidden_states=True,
)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
class VisionTowerS2(VisionTower):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__(vision_tower, args, delay_load)
self.scales = list(map(int, args.s2_scales.split(",")))
self.scales.sort()
self.max_split_size = args.s2_max_split_size
@torch.no_grad()
def forward_feature(self, images):
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_feature = multiscale_forward(
self.forward_feature,
image.unsqueeze(0),
img_sizes=self.scales,
max_split_size=self.max_split_size,
)
image_features.append(image_feature)
else:
image_features = multiscale_forward(
self.forward_feature,
images,
img_sizes=self.scales,
max_split_size=self.max_split_size,
)
return image_features
@property
def hidden_size(self):
return self.config.hidden_size * len(self.scales)
class CLIPVisionTower(VisionTower):
def __init__(self, model_name_or_path: str, config: PretrainedConfig):
super().__init__(model_name_or_path, config)
self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path)
self.vision_tower = CLIPVisionModel.from_pretrained(
model_name_or_path, torch_dtype=eval(config.model_dtype)
)
self.is_loaded = True
class CLIPVisionTowerS2(VisionTowerS2):
def __init__(self, model_name_or_path: str, config: PretrainedConfig):
super().__init__(model_name_or_path, config)
self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path)
self.vision_tower = CLIPVisionModel.from_pretrained(
model_name_or_path, torch_dtype=eval(config.model_dtype)
)
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
self.image_processor.size["shortest_edge"] = self.scales[-1]
self.image_processor.crop_size["height"] = self.image_processor.crop_size[
"width"
] = self.scales[-1]
self.is_loaded = True
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": "identity"}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
class DownSampleBlock(nn.Module):
def forward(self, x):
vit_embeds = x
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.flat_square(vit_embeds)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square(self, x):
n, w, h, c = x.size()
if w % 2 == 1:
x = torch.concat(
[x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1
).contiguous()
n, w, h, c = x.size()
if h % 2 == 1:
x = torch.concat(
[x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2
).contiguous()
n, w, h, c = x.size()
x = x.view(n, w, int(h / 2), int(c * 2))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
return x
class MultimodalProjectorConfig(PretrainedConfig):
model_type = "v2l_projector"
def __init__(self, mm_projector_type: str = None, **kwargs):
super().__init__()
self.mm_projector_type = mm_projector_type
class MultimodalProjector(PreTrainedModel):
config_class = MultimodalProjectorConfig
def __init__(
self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig
):
super().__init__(mm_projector_cfg)
mm_projector_type = mm_projector_cfg.mm_projector_type
if mm_projector_type == "identity":
self.layers = IdentityMap()
elif mm_projector_type == "linear":
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
elif mm_projector_type == "mlp_downsample":
self.layers = nn.Sequential(
DownSampleBlock(),
nn.LayerNorm(config.mm_hidden_size * 4),
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
else:
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
self.layers = nn.Sequential(*modules)
else:
raise ValueError(f"Unknown projector type: {mm_projector_type}")
def forward(self, x, *args, **kwargs):
return self.layers(x)
def build_mm_projector(
model_type_or_path: str, config: PretrainedConfig
) -> PreTrainedModel:
if model_type_or_path is None:
return None
## load from pretrained model
if config.resume_path:
assert os.path.exists(
model_type_or_path
), f"Resume mm projector path {model_type_or_path} does not exist!"
return MultimodalProjector.from_pretrained(
model_type_or_path, config, torch_dtype=eval(config.model_dtype)
)
## build from scratch
else:
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
mm_projector = MultimodalProjector(mm_projector_cfg, config).to(
eval(config.model_dtype)
)
return mm_projector
def build_vision_tower(
model_name_or_path: str, config: PretrainedConfig
) -> PreTrainedModel:
## skip vision tower instantiation
if model_name_or_path is None:
return None
vision_tower_arch = None
if config.resume_path and "radio" not in model_name_or_path:
assert os.path.exists(
model_name_or_path
), f"Resume vision tower path {model_name_or_path} does not exist!"
vision_tower_cfg = AutoConfig.from_pretrained(
model_name_or_path, trust_remote_code=True
)
vision_tower_arch = vision_tower_cfg.architectures[0].lower()
vision_tower_name = (
vision_tower_arch if vision_tower_arch is not None else model_name_or_path
)
use_s2 = getattr(config, "s2", False)
if "intern" in vision_tower_name.lower():
if hasattr(config, "drop_path_rate"):
vision_tower = InternVisionTower(
model_name_or_path, config=config, drop_path_rate=config.drop_path_rate
)
else:
vision_tower = InternVisionTower(
model_name_or_path, config=config, drop_path_rate=0.0
)
elif "clip" in vision_tower_name:
if use_s2:
vision_tower = CLIPVisionTowerS2(model_name_or_path, config)
else:
vision_tower = CLIPVisionTower(model_name_or_path, config)
elif "siglip" in vision_tower_name:
if use_s2:
vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
else:
vision_tower = SiglipVisionTower(model_name_or_path, config)
else:
raise ValueError(f"Unknown vision tower: {model_name_or_path}")
config.mm_hidden_size = (
vision_tower.config.hidden_size if not use_s2 else vision_tower.hidden_size
)
return vision_tower
def has_tokenizer(repo_id_or_path: str) -> bool:
# Check if the tokenizer is in a local directory
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
return True
# Check if the tokenizer is in a Hugging Face Hub repo
try:
return repo_exists(repo_id_or_path) and file_exists(
repo_id_or_path, "tokenizer_config.json"
)
except HFValidationError:
return False
def context_length_extension(config):
orig_ctx_len = getattr(config, "max_position_embeddings", None)
model_max_length = getattr(config, "model_max_length", None)
if orig_ctx_len and model_max_length > orig_ctx_len:
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
return config
def build_llm_and_tokenizer(
model_name_or_path: str,
config: PretrainedConfig,
attn_implementation=None,
model_max_length=None,
*args,
**kwargs,
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
llm_cfg._attn_implementation = attn_implementation
llm_cfg.model_max_length = model_max_length
if model_max_length is not None:
context_length_extension(llm_cfg)
llm = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
config=llm_cfg,
torch_dtype=eval(config.model_dtype),
*args,
**kwargs,
)
# Locate the tokenizer.
llm_path = model_name_or_path
if not has_tokenizer(llm_path):
llm_path = osp.join(llm_path, "llm")
if not has_tokenizer(llm_path):
raise ValueError(f"Cannot find tokenizer in {llm_path}.")
# TODO(ligeng): use LLM class to judge to better compability.
try:
llm_arch = getattr(llm_cfg, "architectures")[0].lower()
except BaseException:
warnings.warn(
f'Cannot find LLM architecture, please check the "config.json" under "{llm_path}".'
)
if "mpt" in llm_arch:
tokenizer = AutoTokenizer.from_pretrained(
llm_path,
model_max_length=llm_cfg.model_max_length,
padding_side="right",
)
elif "yi" in llm_path or (
getattr(llm_cfg, "num_hidden_layers", -1) == 60
and getattr(llm_cfg, "num_attention_heads", -1) == 56
):
tokenizer = AutoTokenizer.from_pretrained(
llm_path,
model_max_length=llm_cfg.model_max_length,
padding_side="right",
use_fast=False,
)
else:
tokenizer = AutoTokenizer.from_pretrained(
llm_path,
model_max_length=llm_cfg.model_max_length,
padding_side="right",
use_fast=False,
legacy=False,
)
# TODO(ligeng): is this necessary for llava?
config.hidden_size = llm.config.hidden_size
return llm, tokenizer
def get_model_config(config):
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
root_path = config._name_or_path
else:
root_path = config.resume_path
# download from huggingface
if root_path is not None and not osp.exists(root_path):
try:
valid_hf_repo = repo_exists(root_path)
except HFValidationError as e:
valid_hf_repo = False
if valid_hf_repo:
root_path = snapshot_download(root_path)
return_list = []
for key in default_keys:
cfg = getattr(config, key, None)
if isinstance(cfg, dict):
try:
return_list.append(os.path.join(root_path, key[:-4]))
except:
raise ValueError(f"Cannot find resume path in config for {key}!")
elif isinstance(cfg, PretrainedConfig):
return_list.append(os.path.join(root_path, key[:-4]))
elif isinstance(cfg, str):
return_list.append(cfg)
return return_list
def is_mm_model(model_path):
"""
Check if the model at the given path is a visual language model.
Args:
model_path (str): The path to the model.
Returns:
bool: True if the model is an MM model, False otherwise.
"""
config = AutoConfig.from_pretrained(model_path)
architectures = config.architectures
for architecture in architectures:
if "llava" in architecture.lower():
return True
return False
def auto_upgrade(config):
cfg = AutoConfig.from_pretrained(config)
if "llava" in config and "llava" not in cfg.model_type:
assert cfg.model_type == "llama"
print(
"You are using newer LLaVA code base, while the checkpoint of v0 is from older code base."
)
print(
"You must upgrade the checkpoint to the new code base (this can be done automatically)."
)
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
if confirm.lower() in ["y", "yes"]:
print("Upgrading checkpoint...")
assert len(cfg.architectures) == 1
setattr(cfg.__class__, "model_type", "llava")
cfg.architectures[0] = "LlavaLlamaForCausalLM"
cfg.save_pretrained(config)
print("Checkpoint upgraded.")
else:
print("Checkpoint upgrade aborted.")
exit(1)
def get_pg_manager():
return None
# TODO decide whether should we use metaclass
class LlavaMetaModel(ABC):
def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs):
# TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation.
if (
hasattr(self, "llm")
or hasattr(self, "vision_tower")
or hasattr(self, "mm_projector")
):
# already initialized, skipped
return
model_dtype = getattr(config, "model_dtype", "torch.float16")
if not hasattr(config, "model_dtype"):
warnings.warn(
"model_dtype not found in config, defaulting to torch.float16."
)
config.model_dtype = model_dtype
cfgs = get_model_config(config)
if len(cfgs) == 3:
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
else:
raise ValueError(
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
)
# print("Before init in Config")
# if hasattr(config, "deepspeed") and "mics" in config.deepspeed:
# print("Using MiCS_Init")
# import deepspeed
# with deepspeed.zero.MiCS_Init():
# self.llm, self.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
# self.vision_tower = build_vision_tower(vision_tower_cfg, config)
# self.mm_projector = build_mm_projector(mm_projector_cfg, config)
# else:
self.llm, self.tokenizer = build_llm_and_tokenizer(
llm_cfg, config, *args, **kwargs
)
self.vision_tower = build_vision_tower(vision_tower_cfg, config)
self.mm_projector = build_mm_projector(mm_projector_cfg, config)
self.post_config()
self.is_loaded = True
assert (
self.llm is not None
or self.vision_tower is not None
or self.mm_projector is not None
), "At least one of the components must be instantiated."
@classmethod
def load_from_config(cls, model_path_or_config, *args, **kwargs):
pass
## FIXME we will use this function to load model in the future
@classmethod
def load_pretrained(cls, model_path_or_config, *args, **kwargs):
kwargs.pop("config", None)
if isinstance(model_path_or_config, str):
config = AutoConfig.from_pretrained(model_path_or_config)
elif isinstance(model_path_or_config, LlavaConfig):
config = model_path_or_config
else:
raise NotImplementedError(
f"wrong type, {type(model_path_or_config)} \
{isinstance(model_path_or_config, LlavaConfig)}"
)
model_dtype = getattr(config, "model_dtype", "torch.float16")
if not hasattr(config, "model_dtype"):
warnings.warn(
"model_dtype not found in config, defaulting to torch.float16."
)
config.model_dtype = model_dtype
cfgs = get_model_config(config)
if len(cfgs) == 3:
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
else:
raise ValueError(
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
)
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained")
init_context = [
no_init_weights(_enable=True),
]
# print("Before Init Context")
# if hasattr(config, "deepspeed") and "mics" in config.deepspeed:
# print("Using MiCS_Init")
# import deepspeed
# init_context.append(deepspeed.zero.MiCS_Init(config_dict_or_path=config.deepspeed))
with ContextManagers(init_context):
vlm = cls(config, *args, **kwargs)
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained finish")
if (
hasattr(vlm, "llm")
or hasattr(vlm, "vision_tower")
or hasattr(vlm, "mm_projector")
):
if vlm.is_loaded:
return vlm
vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(
llm_cfg, config, *args, **kwargs
)
vlm.vision_tower = build_vision_tower(vision_tower_cfg, config)
vlm.mm_projector = build_mm_projector(mm_projector_cfg, config)
self.post_config()
self.is_loaded = True
# FIXME(ligeng, yunhao): llm should never be none here.
assert (
vlm.llm is not None
or vlm.vision_tower is not None
or vlm.mm_projector is not None
), "At least one of the components must be instantiated."
return vlm
## FIXME we will use this function to save the model in the future
def save_pretrained(self, output_dir, state_dict=None):
if state_dict is None:
# other wise fetch from deepspeed
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
state_dict = self.state_dict()
if getattr(self, "tokenizer", None):
self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
if self.get_llm():
print(f"saving llm to {osp.join(output_dir, 'llm')}")
self.llm.config._name_or_path = osp.join(output_dir, "llm")
llm_state_dict = OrderedDict(
{k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}
)
self.llm.save_pretrained(
os.path.join(output_dir, "llm"), state_dict=llm_state_dict
)
self.config.llm_cfg = self.llm.config
if self.get_vision_tower():
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
self.vision_tower.config._name_or_path = osp.join(
output_dir, "vision_tower"
)
vision_tower_state_dict = OrderedDict(
{
k.split("vision_tower.vision_tower.")[-1]: v
for k, v in state_dict.items()
if "vision_tower" in k
}
)
self.vision_tower.vision_tower.save_pretrained(
os.path.join(output_dir, "vision_tower"),
state_dict=vision_tower_state_dict,
)
self.vision_tower.image_processor.save_pretrained(
os.path.join(output_dir, "vision_tower")
)
self.config.vision_tower_cfg = self.vision_tower.config
if hasattr(self.config.vision_tower_cfg, "auto_map"):
if "radio" not in self.get_vision_tower().__class__.__name__.lower():
delattr(self.config.vision_tower_cfg, "auto_map")
if self.get_mm_projector():
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
self.mm_projector.config._name_or_path = osp.join(
output_dir, "mm_projector"
)
mm_projector_state_dict = OrderedDict(
{
k.split("mm_projector.")[-1]: v
for k, v in state_dict.items()
if "mm_projector" in k
}
)
self.mm_projector.save_pretrained(
os.path.join(output_dir, "mm_projector"),
state_dict=mm_projector_state_dict,
)
self.config.mm_projector_cfg = self.mm_projector.config
## update and save top-level config
self.config._name_or_path = output_dir
self.config.architectures = [self.__class__.__name__]
self.config.save_pretrained(output_dir)
def get_llm(self):
llm = getattr(self, "llm", None)
if type(llm) is list:
llm = llm[0]
return llm
def get_lm_head(self):
lm_head = getattr(self.get_llm(), "lm_head", None)
return lm_head
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_mm_projector(self):
mm_projector = getattr(self, "mm_projector", None)
if type(mm_projector) is list:
mm_projector = mm_projector[0]
return mm_projector
def post_config(self):
self.training = self.get_llm().training
## configuration
if getattr(self.config, "llm_cfg", None) is None:
self.config.llm_cfg = self.llm.config
if getattr(self.config, "vision_tower_cfg", None) is None:
self.config.vision_tower_cfg = self.vision_tower.config
if getattr(self.config, "mm_projector_cfg", None) is None:
self.config.mm_projector_cfg = self.mm_projector.config
def freezed_module_patch(self):
"""
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
"""
if self.training:
if self.get_llm() and not getattr(
self.config, "tune_language_model", False
):
pass
# logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
if self.get_vision_tower() and not getattr(
self.config, "tune_vision_tower", False
):
self.get_vision_tower().eval()
if self.get_mm_projector() and not getattr(
self.config, "tune_mm_projector", False
):
self.get_mm_projector().eval()
def encode_images(self, images):
image_features = self.get_vision_tower()(images)
image_features = self.get_mm_projector()(image_features)
return image_features
## @yunhao: is there a better way to handle function call and attributes for llm?
## support beam search
def _temporary_reorder_cache(self, past_key_values, sorted_idx):
return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx)
def get_input_embeddings(self):
return self.get_llm().get_input_embeddings()
def get_output_embeddings(self):
return self.get_llm().get_output_embeddings()
def resize_token_embeddings(self, embed_size):
self.get_llm().resize_token_embeddings(embed_size)
class LlavaMetaForCausalLM(ABC):
"""This class is originally implemented by the LLaVA team and
modified by Haotian Tang and Jason Lu based on Ji Lin's implementation
to support multiple images and input packing."""
## TODO move the forward function here if there is no need to override it
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
):
# Handle sequence parallelism
PROCESS_GROUP_MANAGER = get_pg_manager()
if PROCESS_GROUP_MANAGER is None:
sp_degree = -1
sp_rank = -1
else:
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
vision_tower = self.get_vision_tower()
if (
vision_tower is None
or images is None
or (input_ids.shape[1] == 1 and PROCESS_GROUP_MANAGER is None)
):
if (
past_key_values is not None
and vision_tower is not None
and images is not None
and input_ids.shape[1] == 1
):
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat(
(
attention_mask,
torch.ones(
(
attention_mask.shape[0],
target_shape - attention_mask.shape[1],
),
dtype=attention_mask.dtype,
device=attention_mask.device,
),
),
dim=1,
)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return (
input_ids,
position_ids,
attention_mask,
past_key_values,
None,
labels,
)
# handle different image dtypes for packing
if type(images) is list:
images = torch.cat(images, dim=0)
elif images.ndim == 5: # batch_size x seq_len x image_channels
images = images.flatten(0, 1)
image_features = self.encode_images(images).to(self.device)
# Note (kentang-mit@): image start / end is not implemented here to support pretraining.
if getattr(self.config, "turn_mm_projector", False) and getattr(
self.config, "mm_use_im_start_end", False
):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask
input_ids_copy = input_ids.clone()
# kentang-mit@: Otherwise tokenizer out of bounds. Embeddings of image tokens will not be used.
input_ids_copy[input_ids_copy == IMAGE_TOKEN_INDEX] = 0
input_embeds = self.llm.model.embed_tokens(input_ids_copy)
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
input_embeds_1 = [
cur_input_embeds[cur_attention_mask]
for cur_input_embeds, cur_attention_mask in zip(
input_embeds, attention_mask
)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
# kentang-mit@: If some part of the model is executed in the loop, the the loop length needs to be a constant.
for batch_idx, cur_input_ids in enumerate(input_ids):
cur_input_ids = input_ids[batch_idx]
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[0]
cur_input_embeds_1 = input_embeds_1[batch_idx]
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
# kenang-mit@: we do not have placeholdr image for text-only data now.
continue
cur_input_embeds = input_embeds_1[batch_idx]
image_token_indices = (
[-1]
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
+ [cur_input_ids.shape[0]]
)
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
cur_input_embeds_no_im = []
for i in range(len(image_token_indices) - 1):
if (
sp_degree > 1 and i == 0 and sp_rank != 0
): # Handle sequence parallelism
cur_input_ids_noim.append(cur_input_ids[0:0])
cur_labels_noim.append(cur_labels[0:0])
cur_input_embeds_no_im.append(cur_input_embeds[0:0])
continue
cur_input_ids_noim.append(
cur_input_ids[
image_token_indices[i] + 1 : image_token_indices[i + 1]
]
)
cur_labels_noim.append(
cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]
)
cur_input_embeds_no_im.append(
cur_input_embeds[
image_token_indices[i] + 1 : image_token_indices[i + 1]
]
)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(
torch.full(
(cur_image_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(
self.llm.config, "tokenizer_model_max_length", None
)
if tokenizer_model_max_length is not None:
if any(len(x) > tokenizer_model_max_length for x in new_input_embeds):
warnings.warn("Inputs truncated!")
new_input_embeds = [
x[:tokenizer_model_max_length] for x in new_input_embeds
]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
# max_len = tokenizer_model_max_length
# print("Warning: using max_len as tokenizer_model_max_length")
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_input_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
if getattr(self.llm.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
# if sp_degree > 1: # Handle sequence parallelism
# if sp_rank not in self.global_seq_len:
# self.global_seq_len[sp_rank] = position_ids.shape[-1]
# else:
# assert self.global_seq_len[sp_rank] == position_ids.shape[-1]
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
# We will not use packing here when sequence parallelism is enabled.
if PROCESS_GROUP_MANAGER is not None:
return (
None,
_position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
)
return (
None,
position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
)
def repack_multimodal_data(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
):
# Handle sequence parallelism
PROCESS_GROUP_MANAGER = get_pg_manager()
# if PROCESS_GROUP_MANAGER is None:
# sp_degree = -1
# sp_rank = -1
# else:
# sp_degree = PROCESS_GROUP_MANAGER.sp_degree
# sp_rank = PROCESS_GROUP_MANAGER.sp_rank
# We will not use packing here when sequence parallelism is enabled.
# However, we do resharding here to ensure the sequence length is the same across all ranks.
if PROCESS_GROUP_MANAGER is not None:
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
sp_group = PROCESS_GROUP_MANAGER.ulysses_pg
bs, shard_seqlen = position_ids.shape
ulysess_seq_len = [
torch.zeros(1, dtype=torch.int64, device=position_ids.device)
for _ in range(sp_degree)
]
dist.all_gather(
ulysess_seq_len,
torch.tensor(shard_seqlen, device=position_ids.device),
group=sp_group,
)
# global_seq_len = torch.sum(torch.cat(ulysess_seq_len, dim=0)).item()
# Gather attention_mask and reshard it evenly
attention_mask_list = [
torch.zeros(
(bs, ulysess_seq_len[i]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
for i in range(sp_degree)
]
dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
effective_seqlen_list = [
attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)
]
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
global_attention_mask_list = []
for i in range(bs):
global_attention_mask_batch_list = []
for j in range(sp_degree):
global_attention_mask_batch_list.append(
attention_mask_list[j][i, : effective_seqlen_batch_list[i][j]]
)
global_attention_mask_list.append(
torch.cat(global_attention_mask_batch_list, dim=0)
)
global_attention_mask = torch.nn.utils.rnn.pad_sequence(
global_attention_mask_list, batch_first=True, padding_value=False
)
# Hyperparameters for sequence parallelism resharding
global_seq_len = global_attention_mask.shape[-1]
seq_len_sharded = global_seq_len // sp_degree
start_idx_reshard = seq_len_sharded * sp_rank
end_idx_reshard = (
start_idx_reshard + seq_len_sharded
if sp_rank < sp_degree - 1
else global_seq_len
)
# if sp_rank == 0:
# start_idx = 0
# else:
# start_idx = torch.sum(torch.cat(ulysess_seq_len[:sp_rank], dim=0)).item()
new_attention_mask = torch.narrow(
global_attention_mask,
1,
start_idx_reshard,
end_idx_reshard - start_idx_reshard,
)
# Gather position_ids and reshard it evenly
position_ids_list = [
torch.zeros(
(bs, ulysess_seq_len[i]),
dtype=position_ids.dtype,
device=position_ids.device,
)
for i in range(sp_degree)
]
dist.all_gather(position_ids_list, position_ids, group=sp_group)
global_position_ids_list = []
for i in range(bs):
global_position_ids_batch_list = []
for j in range(sp_degree):
global_position_ids_batch_list.append(
position_ids_list[j][i, : effective_seqlen_batch_list[i][j]]
)
global_position_ids_list.append(
torch.cat(global_position_ids_batch_list, dim=0)
)
global_position_ids = torch.nn.utils.rnn.pad_sequence(
global_position_ids_list, batch_first=True, padding_value=-1
)
new_position_ids = torch.narrow(
global_position_ids,
1,
start_idx_reshard,
end_idx_reshard - start_idx_reshard,
)
# Gather labels and reshard it evenly
labels_list = [
torch.zeros(
(bs, ulysess_seq_len[i]), dtype=labels.dtype, device=labels.device
)
for i in range(sp_degree)
]
dist.all_gather(labels_list, labels, group=sp_group)
global_labels_list = []
for i in range(bs):
global_labels_batch_list = []
for j in range(sp_degree):
global_labels_batch_list.append(
labels_list[j][i, : effective_seqlen_batch_list[i][j]]
)
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
global_labels = torch.nn.utils.rnn.pad_sequence(
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
)
new_labels = torch.narrow(
global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
# Gather inputs_embeds and reshard it evenly
# TODO: Fix the non-enough images.
# inputs_embeds_list = [torch.zeros((bs, ulysess_seq_len[i], inputs_embeds.shape[-1]), dtype=inputs_embeds.dtype, device=inputs_embeds.device, requires_grad=True) for i in range(sp_degree)]
# dist.all_gather(inputs_embeds_list, inputs_embeds, group=sp_group)
# global_inputs_embeds_list = []
# for i in range(bs):
# global_inputs_embeds_batch_list = []
# for j in range(sp_degree):
# global_inputs_embeds_batch_list.append(inputs_embeds_list[j][i, :effective_seqlen_batch_list[i][j]])
# global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
# global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(global_inputs_embeds_list, batch_first=True, padding_value=0)
# new_inputs_embeds = torch.narrow(global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
# Gather all hidden states and flaten them
ulysess_seq_len_cat = torch.cat(ulysess_seq_len, dim=0)
global_inputs_embeds_list = []
if sp_rank == 0:
original_start_id = 0
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
elif sp_rank == sp_degree - 1:
original_start_id = torch.sum(ulysess_seq_len_cat[:sp_rank]).item()
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
else:
original_start_id = torch.sum(ulysess_seq_len_cat[:sp_rank]).item()
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
all_inputs_embeds = torch.zeros(
bs,
torch.sum(ulysess_seq_len_cat),
inputs_embeds.shape[-1],
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
).contiguous()
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
dist.barrier(group=sp_group)
dist.all_reduce(all_inputs_embeds, group=sp_group)
dist.barrier(group=sp_group)
for i in range(bs):
global_inputs_embeds_batch_list = []
for j in range(sp_degree):
prev_len = torch.sum(ulysess_seq_len_cat[:j]).item() if j > 0 else 0
start_id = prev_len
end_id = prev_len + effective_seqlen_batch_list[i][j]
global_inputs_embeds_batch_list.append(
all_inputs_embeds[i, start_id:end_id]
)
global_inputs_embeds_list.append(
torch.cat(global_inputs_embeds_batch_list, dim=0)
)
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
global_inputs_embeds_list, batch_first=True, padding_value=0
)
new_inputs_embeds = torch.narrow(
global_inputs_embeds,
1,
start_idx_reshard,
end_idx_reshard - start_idx_reshard,
)
return (
None,
new_position_ids,
new_attention_mask,
past_key_values,
new_inputs_embeds,
new_labels,
None, # sorted_seqlens_in_batch set as None for sequence parallelism
)
# kentang-mit@: reorder and repack (reduce computation overhead)
# requires transformers replacement.
new_inputs_embeds = []
new_position_ids = []
new_labels = []
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
sorted_seqlens_in_batch, sorted_idx = torch.sort(
seqlens_in_batch, descending=True
)
max_seqlen = inputs_embeds.shape[1]
cur_inputs_embeds = []
cur_position_ids = []
cur_labels = []
cur_batch_len = 0
for i in range(len(sorted_seqlens_in_batch)):
cur_seqlen = sorted_seqlens_in_batch[i].item()
if cur_seqlen + cur_batch_len <= max_seqlen:
cur_batch_len += cur_seqlen
# each item: num_tokens x num_channels
# remove padding on-the-fly
cur_inputs_embeds.append(
inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]
)
cur_position_ids.append(
torch.arange(
cur_inputs_embeds[-1].shape[0],
device=cur_inputs_embeds[-1].device,
)
)
# each item: num_tokens
# remove padding on-the-fly
cur_labels.append(labels[sorted_idx[i]][attention_mask[sorted_idx[i]]])
else:
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
new_position_ids.append(torch.cat(cur_position_ids, 0))
new_labels.append(torch.cat(cur_labels, 0))
# The current batch is too long. We will start a new batch.
cur_batch_len = cur_seqlen
cur_inputs_embeds = [
inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]
]
cur_position_ids = [
torch.arange(
cur_inputs_embeds[-1].shape[0],
device=cur_inputs_embeds[-1].device,
)
]
cur_labels = [labels[sorted_idx[i]][attention_mask[sorted_idx[i]]]]
# Mask the first token in the labels for every sample
# cur_labels[-1][0] = IGNORE_INDEX
if len(cur_inputs_embeds):
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
new_position_ids.append(torch.cat(cur_position_ids, 0))
new_labels.append(torch.cat(cur_labels, 0))
new_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
new_inputs_embeds, batch_first=True, padding_value=self.llm.pad_token_id
)
new_position_ids = torch.nn.utils.rnn.pad_sequence(
new_position_ids, batch_first=True, padding_value=-1
)
new_labels = torch.nn.utils.rnn.pad_sequence(
new_labels, batch_first=True, padding_value=IGNORE_INDEX
)
## yunhao: it's currently a workaround to avoid errors for seq_len < 100
new_attention_mask = new_position_ids.ne(-1)
# sanity check
assert new_attention_mask.sum() == attention_mask.sum()
# Handle sequence parallelism: Calculate the position ids for sequence parallelism
# NOTE: This implementation only works for [<bos>, <img>, ..., <img>, <caption>] pattern
# if sp_degree > 1 and sp_rank > 0:
# cur_len = new_position_ids.shape[-1]
# if sp_rank < sp_degree - 1: # Intermediate ranks
# offset = cur_len * sp_rank + 1
# new_position_ids = new_position_ids + offset
# elif sp_rank == sp_degree - 1: # The last rank
# assert new_labels[0, -1] != IGNORE_INDEX, "The first sequence should be longest one."
# last_img_token_index = torch.where(new_labels[0] == IGNORE_INDEX)[0][-1]
# # print(f"last_img_token_index, {last_img_token_index}")
# # if sp_degree == 2: # Handle SP=2, because of bos_token
# # offset = last_img_token_index + 3
# # else:
# # offset = (last_img_token_index + 2) * sp_rank + 1
# offset = (last_img_token_index + 1) * sp_rank + 1
# offset_mask = new_position_ids != -1
# new_position_ids[offset_mask] += offset
# else:
# raise ValueError(f"sp_rank {sp_rank} is out of range {sp_degree}")
return (
None,
new_position_ids,
new_attention_mask,
past_key_values,
new_inputs_embeds,
new_labels,
sorted_seqlens_in_batch,
)
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
## TODO yunhao: handle cases for <im_st> <im_end>
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
)
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[
-num_new_tokens:
]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
)
elif model_args.mm_use_im_patch_token:
if model_args.mm_projector:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False