chenlin commited on
Commit
7f57424
1 Parent(s): b5ca4b2
README.md CHANGED
@@ -1,3 +1,41 @@
1
  ---
2
- license: apache-2.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ inference: false
3
+ datasets:
4
+ - ShareGPT4Video/ShareGPT4Video
5
  ---
6
+ <br>
7
+ <br>
8
+
9
+ # ShareCaptioner-Video Model Card
10
+
11
+ ## Model details
12
+
13
+ **Model type:**
14
+ ShareCaptioner-Video is an open-source captioner fine-tuned on GPT4V-assisted [ShareGPT4Video](https://huggingface.co/datasets/Lin-Chen/ShareGPT4Video) detailed caption data with supporting various durations, aspect ratios, and resolutions of videos. ShareCaptioner-Video is based on the [InternLM-Xcomposer2-4KHD](https://github.com/InternLM/InternLM-XComposer) model.
15
+
16
+ ShareCaptaioner-Video features 4 roles:
17
+
18
+ - **Fast Captioning:** The model employs an image-grid format for direct video captioning, providing rapid generation speeds that are ideal for short videos. In practice, we concatenate all the keyframes of a video into a vertically elongated image and train the model on a caption task.
19
+ - **Sliding Captioning:** The model supports streaming captioning in a differential sliding-window format, yielding high-quality captions that are suitable for long videos. We take the two adjacent keyframes alongside the previous differential caption as input, and train the model to describe the events occurring between them.
20
+ - **Clip Summarizing:** The model can swiftly summarize any clip from ShareGPT4Video or videos that have undergone the differential sliding-window captioning process, eliminating the need to re-process frames. We use all the differential descriptions as input, and the output is the video caption.
21
+ - **Prompt Re-Captioning:** The model can rephrase prompts input by users who prefer specific video generation areas, ensuring that T2VMs trained on high-quality video-caption data maintain format alignment during inference with their training. In practice, we use GPT-4 to generate Sora-style prompts for our dense captions, and we train the re-captioning task in reverse, i.e., by using the generated prompt as input and the dense caption as the training target.
22
+
23
+ **Model date:**
24
+ ShareCaptioner was trained in May 2024.
25
+
26
+ **Paper or resources for more information:**
27
+ [[Project](https://ShareGPT4Video.github.io/)] [[Paper]()] [[Code](https://github.com/ShareGPT4Omni/ShareGPT4Video)]
28
+
29
+ ## Intended use
30
+
31
+ **Primary intended uses:**
32
+ The primary use of ShareCaptioner-Video is about producing high-quality video captions.
33
+
34
+ **Primary intended users:**
35
+ The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
36
+
37
+ ## Finetuning dataset
38
+
39
+ - 40K GPT4V-generated video-caption pairs
40
+ - 40K differential sliding-window captioning conversations
41
+ - 40K prompt-to-caption textual data
added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|action_end|>": 92547,
3
+ "<|action_start|>": 92546,
4
+ "<|im_end|>": 92545,
5
+ "<|im_start|>": 92544,
6
+ "<|interpreter|>": 92548,
7
+ "<|plugin|>": 92549
8
+ }
build_mlp.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import re
4
+ import math
5
+ from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
6
+
7
+
8
+ def build_vision_tower():
9
+ vision_tower = 'openai/clip-vit-large-patch14-336'
10
+ return CLIPVisionTower(vision_tower)
11
+
12
+
13
+ def build_vision_projector():
14
+ projector_type = 'mlp2x_gelu'
15
+ mm_hidden_size = 4096
16
+ mid_hidden_size = 4096
17
+ hidden_size = 4096
18
+
19
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
20
+ if mlp_gelu_match:
21
+ mlp_depth = int(mlp_gelu_match.group(1))
22
+ modules = [nn.Linear(mm_hidden_size, mid_hidden_size)]
23
+ for _ in range(1, mlp_depth):
24
+ modules.append(nn.GELU())
25
+ modules.append(nn.Linear(mid_hidden_size, mid_hidden_size))
26
+
27
+ return nn.Sequential(*modules)
28
+
29
+ if projector_type == 'identity':
30
+ return IdentityMap()
31
+
32
+ raise ValueError(f'Unknown projector type: {projector_type}')
33
+
34
+ class IdentityMap(nn.Module):
35
+ def __init__(self):
36
+ super().__init__()
37
+
38
+ def forward(self, x, *args, **kwargs):
39
+ return x
40
+
41
+ @property
42
+ def config(self):
43
+ return {"mm_projector_type": 'identity'}
44
+
45
+
46
+ class CLIPVisionTower(nn.Module):
47
+ def __init__(self, vision_tower):
48
+ super().__init__()
49
+
50
+ self.is_loaded = False
51
+
52
+ self.vision_tower_name = vision_tower
53
+ self.select_layer = -1
54
+ self.select_feature = 'patch'
55
+ self.load_model()
56
+
57
+ def load_model(self):
58
+ self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
59
+ self.vision_tower.requires_grad_(False)
60
+
61
+ self.is_loaded = True
62
+
63
+ def resize_pos(self):
64
+ print ('Dummy Resized')
65
+
66
+ def feature_select(self, image_forward_outs):
67
+ image_features = image_forward_outs.hidden_states[self.select_layer]
68
+ if self.select_feature == 'patch':
69
+ image_features = image_features[:, 1:]
70
+ elif self.select_feature == 'cls_patch':
71
+ image_features = image_features
72
+ else:
73
+ raise ValueError(f'Unexpected select feature: {self.select_feature}')
74
+ return image_features
75
+
76
+ def forward(self, images, glb_GN, sub_GN):
77
+ if not self.is_loaded:
78
+ self.load_model()
79
+ assert type(images) is list
80
+ shapes = []
81
+ input_imgs = []
82
+ for img in images:
83
+ _, C, H, W = img.shape
84
+ shapes.append([H//336, W//336])
85
+ sub_img = img.reshape(1,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous()
86
+ glb_img = torch.nn.functional.interpolate(img.float(), size=(336,336), mode='bicubic',).to(sub_img.dtype)
87
+ input_imgs.append(glb_img)
88
+ input_imgs.append(sub_img)
89
+ input_imgs = torch.cat(input_imgs, dim=0)
90
+
91
+ image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
92
+ image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) ### B*?, N, C
93
+ _, N, C = image_features.shape
94
+ H = int(math.sqrt(N))
95
+ assert N == 24 ** 2
96
+
97
+ output_imgs = []
98
+ output_len = []
99
+ for [h, w] in shapes:
100
+ B_ = h*w
101
+ glb_img = image_features[:1] ### 1, N, C
102
+ glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
103
+ temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1)
104
+ glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
105
+
106
+ sub_img = image_features[1:1+B_] ### ?, N, C
107
+ sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
108
+ sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
109
+ temp_sub_GN = sub_GN.repeat(1, h*12, 1, 1)
110
+ sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
111
+
112
+ output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1))
113
+ temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
114
+ assert temp_len == output_imgs[-1].shape[1]
115
+ output_len.append(temp_len)
116
+
117
+ image_features = image_features[1+h*w:]
118
+
119
+ output_imgs = torch.cat(output_imgs, dim=1)
120
+
121
+ return output_imgs, output_len
122
+
123
+ @property
124
+ def dummy_feature(self):
125
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
126
+
127
+ @property
128
+ def dtype(self):
129
+ return self.vision_tower.dtype
130
+
131
+ @property
132
+ def device(self):
133
+ return self.vision_tower.device
134
+
135
+ @property
136
+ def config(self):
137
+ if self.is_loaded:
138
+ return self.vision_tower.config
139
+ else:
140
+ return self.cfg_only
141
+
142
+ @property
143
+ def hidden_size(self):
144
+ return self.config.hidden_size
145
+
146
+ @property
147
+ def num_patches(self):
148
+ return (self.config.image_size // self.config.patch_size) ** 2
149
+
150
+ class PLoRA(nn.Linear):
151
+ def __init__(self,
152
+ in_features: int,
153
+ out_features: int,
154
+ bias: bool = True,
155
+ device=None,
156
+ dtype=None,
157
+ lora_r=8,
158
+ lora_alpha=16,
159
+ lora_dropout=0.05,
160
+ lora_len=0,
161
+ **kwargs) -> None:
162
+ super().__init__(in_features, out_features, bias, device, dtype)
163
+ self.lora_r = lora_r
164
+ self.lora_alpha = lora_alpha
165
+ self.lora_len = lora_len
166
+ if lora_dropout > 0.:
167
+ self.lora_dropout = nn.Dropout(p=lora_dropout)
168
+ else:
169
+ self.lora_dropout = lambda x: x
170
+ self.lora_scaling = self.lora_alpha / self.lora_r
171
+
172
+ self.Plora_A = nn.Linear(in_features,
173
+ self.lora_r,
174
+ bias=False,
175
+ device=device,
176
+ dtype=dtype)
177
+ self.Plora_B = nn.Linear(self.lora_r,
178
+ out_features,
179
+ bias=False,
180
+ device=device,
181
+ dtype=dtype)
182
+
183
+ self.reset_parameters()
184
+
185
+ def reset_parameters(self):
186
+ if hasattr(self, 'lora_A'):
187
+ # initialize A the same way as the default for nn.Linear and B to zero
188
+ nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
189
+ nn.init.zeros_(self.lora_B.weight)
190
+ #print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
191
+
192
+ def forward(self, x, im_mask=None):
193
+ B, N, C = x.shape
194
+ x = x.reshape(-1, C)
195
+ im_mask = im_mask.view(-1)
196
+ res = super().forward(x)
197
+ if im_mask is not None:
198
+ if torch.sum(im_mask) > 0:
199
+ part_x = x[im_mask]
200
+ res[im_mask] += self.Plora_B(self.Plora_A(
201
+ self.lora_dropout(part_x))) * self.lora_scaling
202
+ else:
203
+ part_x = x[:1]
204
+ res[:1] += self.Plora_B(self.Plora_A(
205
+ self.lora_dropout(part_x))) * 0
206
+
207
+ return res.reshape(B, N, -1)
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLM2ForCausalLM"
4
+ ],
5
+ "attn_implementation": "flash_attention_2",
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
8
+ "AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
9
+ "AutoModelForCausalLM": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM"
10
+ },
11
+ "bias": false,
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 14336,
18
+ "max_length": 16384,
19
+ "max_position_embeddings": 32768,
20
+ "model_type": "internlmxcomposer2",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 2,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.33.1",
31
+ "use_cache": false,
32
+ "vocab_size": 92544
33
+ }
configuration_internlm2.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
28
+ class InternLM2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
31
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
32
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`InternLM2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
62
+ just in case (e.g., 512 or 1024 or 2048).
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
71
+ Whether to tie weight embeddings
72
+ Example:
73
+
74
+ """
75
+ model_type = "internlm2"
76
+ _auto_class = "AutoConfig"
77
+
78
+ def __init__( # pylint: disable=W0102
79
+ self,
80
+ vocab_size=103168,
81
+ hidden_size=4096,
82
+ intermediate_size=11008,
83
+ num_hidden_layers=32,
84
+ num_attention_heads=32,
85
+ num_key_value_heads=None,
86
+ hidden_act="silu",
87
+ max_position_embeddings=2048,
88
+ initializer_range=0.02,
89
+ rms_norm_eps=1e-6,
90
+ use_cache=True,
91
+ pad_token_id=0,
92
+ bos_token_id=1,
93
+ eos_token_id=2,
94
+ tie_word_embeddings=False,
95
+ bias=True,
96
+ rope_theta=10000,
97
+ rope_scaling=None,
98
+ attn_implementation="eager",
99
+ **kwargs,
100
+ ):
101
+ self.vocab_size = vocab_size
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.hidden_size = hidden_size
104
+ self.intermediate_size = intermediate_size
105
+ self.num_hidden_layers = num_hidden_layers
106
+ self.num_attention_heads = num_attention_heads
107
+ self.bias = bias
108
+
109
+ if num_key_value_heads is None:
110
+ num_key_value_heads = num_attention_heads
111
+ self.num_key_value_heads = num_key_value_heads
112
+
113
+ self.hidden_act = hidden_act
114
+ self.initializer_range = initializer_range
115
+ self.rms_norm_eps = rms_norm_eps
116
+ self.use_cache = use_cache
117
+ self.rope_theta = rope_theta
118
+ self.rope_scaling = rope_scaling
119
+ self._rope_scaling_validation()
120
+
121
+ self.attn_implementation = attn_implementation
122
+ if self.attn_implementation is None:
123
+ self.attn_implementation = "eager"
124
+ super().__init__(
125
+ pad_token_id=pad_token_id,
126
+ bos_token_id=bos_token_id,
127
+ eos_token_id=eos_token_id,
128
+ tie_word_embeddings=tie_word_embeddings,
129
+ **kwargs,
130
+ )
131
+
132
+ def _rope_scaling_validation(self):
133
+ """
134
+ Validate the `rope_scaling` configuration.
135
+ """
136
+ if self.rope_scaling is None:
137
+ return
138
+
139
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
140
+ raise ValueError(
141
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
142
+ f"got {self.rope_scaling}"
143
+ )
144
+ rope_scaling_type = self.rope_scaling.get("type", None)
145
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
146
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
147
+ raise ValueError(
148
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
149
+ )
150
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
151
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internlm_xcomposer2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ class InternLMXcomposer2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = "internlm2"
75
+ _auto_class = "AutoConfig"
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act="silu",
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation="eager",
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = "eager"
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
141
+ f"got {self.rope_scaling}"
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get("type", None)
144
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 4480,
6
+ "pad_token_id": 2,
7
+ "transformers_version": "4.33.1",
8
+ "use_cache": false
9
+ }
ixc_utils.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import torchvision
4
+ from PIL import Image
5
+ from torchvision.transforms.functional import InterpolationMode
6
+ import torchvision.transforms as transforms
7
+
8
+ def padding_336(b):
9
+ width, height = b.size
10
+ tar = int(np.ceil(height / 336) * 336)
11
+ top_padding = int((tar - height)/2)
12
+ bottom_padding = tar - height - top_padding
13
+ left_padding = 0
14
+ right_padding = 0
15
+ b = transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
16
+
17
+ return b
18
+
19
+ def HD_transform(img, hd_num=16):
20
+ width, height = img.size
21
+ trans = False
22
+ if width < height:
23
+ img = img.transpose(Image.TRANSPOSE)
24
+ trans = True
25
+ width, height = img.size
26
+ ratio = (width/ height)
27
+ scale = 1
28
+ while scale*np.ceil(scale/ratio) <= hd_num:
29
+ scale += 1
30
+ scale -= 1
31
+ new_w = int(scale * 336)
32
+ new_h = int(new_w / ratio)
33
+
34
+ img = transforms.functional.resize(img, [new_h, new_w],)
35
+ img = padding_336(img)
36
+ width, height = img.size
37
+ if trans:
38
+ img = img.transpose(Image.TRANSPOSE)
39
+
40
+ return img
41
+
42
+
modeling_internlm2.py ADDED
@@ -0,0 +1,990 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ import copy
22
+ import numpy as np
23
+ from typing import List, Optional, Tuple, Union
24
+ from torchvision import transforms
25
+ from torchvision.transforms.functional import InterpolationMode
26
+ from PIL import Image
27
+
28
+ import torch
29
+ import torch.nn.functional as F
30
+ import torch.utils.checkpoint
31
+ from einops import rearrange
32
+ from torch import nn
33
+ from transformers.activations import ACT2FN
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ SequenceClassifierOutputWithPast,
38
+ )
39
+ from transformers.modeling_utils import PreTrainedModel
40
+ from transformers.utils import (
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ logging,
44
+ replace_return_docstrings,
45
+ )
46
+
47
+ try:
48
+ from transformers.generation.streamers import BaseStreamer
49
+ except: # noqa # pylint: disable=bare-except
50
+ BaseStreamer = None
51
+
52
+ from .build_mlp import PLoRA
53
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config as InternLM2Config
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CONFIG_FOR_DOC = "InternLM2Config"
58
+
59
+ flash_attn_func, flash_attn_varlen_func = None, None
60
+ pad_input, index_first_axis, unpad_input = None, None, None
61
+ def _import_flash_attn():
62
+ global flash_attn_func, flash_attn_varlen_func
63
+ global pad_input, index_first_axis, unpad_input
64
+ try:
65
+ from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
66
+ from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
67
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
68
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
69
+ except ImportError:
70
+ raise ImportError("flash_attn is not installed.")
71
+
72
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
73
+ def _get_unpad_data(attention_mask):
74
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
75
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
76
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
77
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
78
+ return (
79
+ indices,
80
+ cu_seqlens,
81
+ max_seqlen_in_batch,
82
+ )
83
+
84
+
85
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
86
+ def _make_causal_mask(
87
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
88
+ ):
89
+ """
90
+ Make causal mask used for bi-directional self-attention.
91
+ """
92
+ bsz, tgt_len = input_ids_shape
93
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
94
+ mask_cond = torch.arange(mask.size(-1), device=device)
95
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
96
+ mask = mask.to(dtype)
97
+
98
+ if past_key_values_length > 0:
99
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
100
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
101
+
102
+
103
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
104
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
105
+ """
106
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
107
+ """
108
+ bsz, src_len = mask.size()
109
+ tgt_len = tgt_len if tgt_len is not None else src_len
110
+
111
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
112
+
113
+ inverted_mask = 1.0 - expanded_mask
114
+
115
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
116
+
117
+
118
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
119
+ class InternLM2RMSNorm(nn.Module):
120
+ def __init__(self, hidden_size, eps=1e-6):
121
+ """
122
+ InternLM2RMSNorm is equivalent to T5LayerNorm
123
+ """
124
+ super().__init__()
125
+ self.weight = nn.Parameter(torch.ones(hidden_size))
126
+ self.variance_epsilon = eps
127
+
128
+ def forward(self, hidden_states):
129
+ input_dtype = hidden_states.dtype
130
+ hidden_states = hidden_states.to(torch.float32)
131
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
132
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
133
+ return self.weight * hidden_states.to(input_dtype)
134
+
135
+
136
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
137
+ class InternLM2RotaryEmbedding(nn.Module):
138
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
139
+ super().__init__()
140
+
141
+ self.dim = dim
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.base = base
144
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
145
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
146
+
147
+ # Build here to make `torch.jit.trace` work.
148
+ self._set_cos_sin_cache(
149
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
150
+ )
151
+
152
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
153
+ self.max_seq_len_cached = seq_len
154
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
155
+
156
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
157
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
158
+ emb = torch.cat((freqs, freqs), dim=-1)
159
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
160
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
161
+
162
+ def forward(self, x, seq_len=None):
163
+ # x: [bs, num_attention_heads, seq_len, head_size]
164
+ if seq_len > self.max_seq_len_cached:
165
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
166
+
167
+ return (
168
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
169
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
170
+ )
171
+
172
+
173
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
174
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
175
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
176
+
177
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
178
+ self.scaling_factor = scaling_factor
179
+ super().__init__(dim, max_position_embeddings, base, device)
180
+
181
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
182
+ self.max_seq_len_cached = seq_len
183
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
184
+ t = t / self.scaling_factor
185
+
186
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
187
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
188
+ emb = torch.cat((freqs, freqs), dim=-1)
189
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
190
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
191
+
192
+
193
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
194
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
195
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
196
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
197
+ """
198
+
199
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
200
+ self.scaling_factor = scaling_factor
201
+ super().__init__(dim, max_position_embeddings, base, device)
202
+
203
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
204
+ self.max_seq_len_cached = seq_len
205
+
206
+ if seq_len > self.max_position_embeddings:
207
+ base = self.base * (
208
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
209
+ ) ** (self.dim / (self.dim - 2))
210
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
211
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
212
+
213
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
214
+
215
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
216
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
217
+ emb = torch.cat((freqs, freqs), dim=-1)
218
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
219
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
220
+
221
+
222
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
223
+ def rotate_half(x):
224
+ """Rotates half the hidden dims of the input."""
225
+ x1 = x[..., : x.shape[-1] // 2]
226
+ x2 = x[..., x.shape[-1] // 2 :]
227
+ return torch.cat((-x2, x1), dim=-1)
228
+
229
+
230
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
231
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
232
+ """Applies Rotary Position Embedding to the query and key tensors."""
233
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
234
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
235
+ q_embed = (q * cos) + (rotate_half(q) * sin)
236
+ k_embed = (k * cos) + (rotate_half(k) * sin)
237
+ return q_embed, k_embed
238
+
239
+
240
+ class InternLM2MLP(nn.Module):
241
+ def __init__(self, config):
242
+ super().__init__()
243
+ self.config = config
244
+ self.hidden_size = config.hidden_size
245
+ self.intermediate_size = config.intermediate_size
246
+ #self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
247
+ #self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
248
+ #self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
249
+
250
+ self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
251
+ lora_r=256, lora_alpha=256, lora_len=1225)
252
+ self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
253
+ lora_r=256, lora_alpha=256, lora_len=1225)
254
+ self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False,
255
+ lora_r=256, lora_alpha=256, lora_len=1225)
256
+
257
+ self.act_fn = ACT2FN[config.hidden_act]
258
+
259
+ def forward(self, x, im_mask):
260
+ down_proj = self.w2(self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
261
+
262
+ return down_proj
263
+
264
+
265
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
266
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
267
+ """
268
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
269
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
270
+ """
271
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
272
+ if n_rep == 1:
273
+ return hidden_states
274
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
275
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
276
+
277
+
278
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
279
+ class InternLM2Attention(nn.Module):
280
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
281
+
282
+ def __init__(self, config: InternLM2Config):
283
+ super().__init__()
284
+ self.config = config
285
+ self.hidden_size = config.hidden_size
286
+ self.num_heads = config.num_attention_heads
287
+ self.head_dim = self.hidden_size // self.num_heads
288
+ self.num_key_value_heads = config.num_key_value_heads
289
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
290
+ self.max_position_embeddings = config.max_position_embeddings
291
+ self.is_causal = True
292
+
293
+ if (self.head_dim * self.num_heads) != self.hidden_size:
294
+ raise ValueError(
295
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
296
+ f" and `num_heads`: {self.num_heads})."
297
+ )
298
+
299
+ #self.wqkv = nn.Linear(
300
+ self.wqkv = PLoRA(
301
+ self.hidden_size,
302
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
303
+ bias=config.bias,
304
+ )
305
+
306
+ #self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
307
+ self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias,
308
+ lora_r=256, lora_alpha=256, lora_len=1225)
309
+ self._init_rope()
310
+
311
+ def _init_rope(self):
312
+ if self.config.rope_scaling is None:
313
+ self.rotary_emb = InternLM2RotaryEmbedding(
314
+ self.head_dim,
315
+ max_position_embeddings=self.max_position_embeddings,
316
+ base=self.config.rope_theta,
317
+ )
318
+ else:
319
+ scaling_type = self.config.rope_scaling["type"]
320
+ scaling_factor = self.config.rope_scaling["factor"]
321
+ if scaling_type == "dynamic":
322
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
323
+ self.head_dim,
324
+ max_position_embeddings=self.max_position_embeddings,
325
+ base=self.config.rope_theta,
326
+ scaling_factor=scaling_factor,
327
+ )
328
+ elif scaling_type == "linear":
329
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
330
+ self.head_dim,
331
+ max_position_embeddings=self.max_position_embeddings,
332
+ base=self.config.rope_theta,
333
+ scaling_factor=scaling_factor,
334
+ )
335
+ else:
336
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
337
+ return self.rotary_emb
338
+
339
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
340
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
341
+
342
+ def forward(
343
+ self,
344
+ hidden_states: torch.Tensor,
345
+ attention_mask: Optional[torch.Tensor] = None,
346
+ position_ids: Optional[torch.LongTensor] = None,
347
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
348
+ output_attentions: bool = False,
349
+ use_cache: bool = False,
350
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
351
+ **kwargs,
352
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
353
+ if "padding_mask" in kwargs:
354
+ warnings.warn(
355
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
356
+ "Please make sure use `attention_mask` instead.`"
357
+ )
358
+
359
+ bsz, q_len, _ = hidden_states.size()
360
+
361
+ qkv_states = self.wqkv(hidden_states, im_mask)
362
+
363
+ qkv_states = rearrange(
364
+ qkv_states,
365
+ "b q (h gs d) -> b q h gs d",
366
+ gs=2 + self.num_key_value_groups,
367
+ d=self.head_dim,
368
+ )
369
+
370
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
371
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
372
+ key_states = qkv_states[..., -2, :]
373
+ value_states = qkv_states[..., -1, :]
374
+
375
+ query_states = query_states.transpose(1, 2)
376
+ key_states = key_states.transpose(1, 2)
377
+ value_states = value_states.transpose(1, 2)
378
+
379
+ kv_seq_len = key_states.shape[-2]
380
+ if past_key_value is not None:
381
+ kv_seq_len += past_key_value[0].shape[-2]
382
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
383
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
384
+
385
+ if past_key_value is not None:
386
+ # reuse k, v, self_attention
387
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
388
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
389
+
390
+ past_key_value = (key_states, value_states) if use_cache else None
391
+
392
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
393
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
394
+
395
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
396
+
397
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
398
+ raise ValueError(
399
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
400
+ f" {attn_weights.size()}"
401
+ )
402
+
403
+ if attention_mask is not None:
404
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
405
+ raise ValueError(
406
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
407
+ )
408
+ attn_weights = attn_weights + attention_mask
409
+
410
+ # upcast attention to fp32
411
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
412
+ attn_output = torch.matmul(attn_weights, value_states)
413
+
414
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
415
+ raise ValueError(
416
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
417
+ f" {attn_output.size()}"
418
+ )
419
+
420
+ attn_output = attn_output.transpose(1, 2).contiguous()
421
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
422
+
423
+ attn_output = self.wo(attn_output, im_mask)
424
+
425
+ if not output_attentions:
426
+ attn_weights = None
427
+
428
+ return attn_output, attn_weights, past_key_value
429
+
430
+
431
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
432
+ class InternLM2FlashAttention2(InternLM2Attention):
433
+ """
434
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
435
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
436
+ flash attention and deal with padding tokens in case the input contains any of them.
437
+ """
438
+
439
+ def forward(
440
+ self,
441
+ hidden_states: torch.Tensor,
442
+ attention_mask: Optional[torch.LongTensor] = None,
443
+ position_ids: Optional[torch.LongTensor] = None,
444
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
445
+ output_attentions: bool = False,
446
+ use_cache: bool = False,
447
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
448
+ **kwargs,
449
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
450
+ # InternLM2FlashAttention2 attention does not support output_attentions
451
+ if "padding_mask" in kwargs:
452
+ warnings.warn(
453
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
454
+ "Please make sure use `attention_mask` instead.`"
455
+ )
456
+
457
+ # overwrite attention_mask with padding_mask
458
+ attention_mask = kwargs.pop("padding_mask")
459
+
460
+ output_attentions = False
461
+
462
+ bsz, q_len, _ = hidden_states.size()
463
+
464
+ qkv_states = self.wqkv(hidden_states, im_mask)
465
+
466
+ qkv_states = rearrange(
467
+ qkv_states,
468
+ "b q (h gs d) -> b q h gs d",
469
+ gs=2 + self.num_key_value_groups,
470
+ d=self.head_dim,
471
+ )
472
+
473
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
474
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
475
+ key_states = qkv_states[..., -2, :]
476
+ value_states = qkv_states[..., -1, :]
477
+
478
+ query_states = query_states.transpose(1, 2)
479
+ key_states = key_states.transpose(1, 2)
480
+ value_states = value_states.transpose(1, 2)
481
+
482
+ kv_seq_len = key_states.shape[-2]
483
+ if past_key_value is not None:
484
+ kv_seq_len += past_key_value[0].shape[-2]
485
+
486
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
487
+
488
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
489
+
490
+ if past_key_value is not None:
491
+ # reuse k, v, self_attention
492
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
493
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
494
+
495
+ past_key_value = (key_states, value_states) if use_cache else None
496
+
497
+ query_states = query_states.transpose(1, 2)
498
+ key_states = key_states.transpose(1, 2)
499
+ value_states = value_states.transpose(1, 2)
500
+
501
+ attn_output = self._flash_attention_forward(
502
+ query_states, key_states, value_states, attention_mask, q_len
503
+ )
504
+
505
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
506
+ attn_output = self.wo(attn_output, im_mask)
507
+
508
+ if not output_attentions:
509
+ attn_weights = None
510
+
511
+ return attn_output, attn_weights, past_key_value
512
+
513
+ def _flash_attention_forward(
514
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
515
+ ):
516
+ """
517
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
518
+ first unpad the input, then computes the attention scores and pad the final attention scores.
519
+
520
+ Args:
521
+ query_states (`torch.Tensor`):
522
+ Input query states to be passed to Flash Attention API
523
+ key_states (`torch.Tensor`):
524
+ Input key states to be passed to Flash Attention API
525
+ value_states (`torch.Tensor`):
526
+ Input value states to be passed to Flash Attention API
527
+ attention_mask (`torch.Tensor`):
528
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
529
+ position of padding tokens and 1 for the position of non-padding tokens.
530
+ dropout (`int`, *optional*):
531
+ Attention dropout
532
+ softmax_scale (`float`, *optional*):
533
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
534
+ """
535
+ # Contains at least one padding token in the sequence
536
+ causal = self.is_causal and query_length != 1
537
+ if attention_mask is not None:
538
+ batch_size = query_states.shape[0]
539
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
540
+ query_states, key_states, value_states, attention_mask, query_length
541
+ )
542
+
543
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
544
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
545
+
546
+ attn_output_unpad = flash_attn_varlen_func(
547
+ query_states,
548
+ key_states,
549
+ value_states,
550
+ cu_seqlens_q=cu_seqlens_q,
551
+ cu_seqlens_k=cu_seqlens_k,
552
+ max_seqlen_q=max_seqlen_in_batch_q,
553
+ max_seqlen_k=max_seqlen_in_batch_k,
554
+ dropout_p=dropout,
555
+ softmax_scale=softmax_scale,
556
+ causal=causal,
557
+ )
558
+
559
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
560
+ else:
561
+ attn_output = flash_attn_func(
562
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
563
+ )
564
+
565
+ return attn_output
566
+
567
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
568
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
569
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
570
+
571
+ key_layer = index_first_axis(
572
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
573
+ )
574
+ value_layer = index_first_axis(
575
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
576
+ )
577
+
578
+ if query_length == kv_seq_len:
579
+ query_layer = index_first_axis(
580
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
581
+ )
582
+ cu_seqlens_q = cu_seqlens_k
583
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
584
+ indices_q = indices_k
585
+ elif query_length == 1:
586
+ max_seqlen_in_batch_q = 1
587
+ cu_seqlens_q = torch.arange(
588
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
589
+ ) # There is a memcpy here, that is very bad.
590
+ indices_q = cu_seqlens_q[:-1]
591
+ query_layer = query_layer.squeeze(1)
592
+ else:
593
+ # The -q_len: slice assumes left padding.
594
+ attention_mask = attention_mask[:, -query_length:]
595
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
596
+
597
+ return (
598
+ query_layer,
599
+ key_layer,
600
+ value_layer,
601
+ indices_q.to(torch.int64),
602
+ (cu_seqlens_q, cu_seqlens_k),
603
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
604
+ )
605
+
606
+ INTERNLM2_ATTENTION_CLASSES = {
607
+ "eager": InternLM2Attention,
608
+ "flash_attention_2": InternLM2FlashAttention2,
609
+ }
610
+
611
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
612
+ class InternLM2DecoderLayer(nn.Module):
613
+ def __init__(self, config: InternLM2Config):
614
+ super().__init__()
615
+ self.hidden_size = config.hidden_size
616
+
617
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
618
+
619
+ self.feed_forward = InternLM2MLP(config)
620
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
621
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
622
+
623
+ def forward(
624
+ self,
625
+ hidden_states: torch.Tensor,
626
+ attention_mask: Optional[torch.Tensor] = None,
627
+ position_ids: Optional[torch.LongTensor] = None,
628
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
629
+ output_attentions: Optional[bool] = False,
630
+ use_cache: Optional[bool] = False,
631
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
632
+ **kwargs,
633
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
634
+ """
635
+ Args:
636
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
637
+ attention_mask (`torch.FloatTensor`, *optional*):
638
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
639
+ query_sequence_length, key_sequence_length)` if default attention is used.
640
+ output_attentions (`bool`, *optional*):
641
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
642
+ returned tensors for more detail.
643
+ use_cache (`bool`, *optional*):
644
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
645
+ (see `past_key_values`).
646
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
647
+ """
648
+ if "padding_mask" in kwargs:
649
+ warnings.warn(
650
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
651
+ "Please make sure use `attention_mask` instead.`"
652
+ )
653
+
654
+ residual = hidden_states
655
+
656
+ hidden_states = self.attention_norm(hidden_states)
657
+
658
+ # Self Attention
659
+ hidden_states, self_attn_weights, present_key_value = self.attention(
660
+ hidden_states=hidden_states,
661
+ attention_mask=attention_mask,
662
+ position_ids=position_ids,
663
+ past_key_value=past_key_value,
664
+ output_attentions=output_attentions,
665
+ use_cache=use_cache,
666
+ im_mask=im_mask,
667
+ **kwargs,
668
+ )
669
+ hidden_states = residual + hidden_states
670
+
671
+ # Fully Connected
672
+ residual = hidden_states
673
+ hidden_states = self.ffn_norm(hidden_states)
674
+ hidden_states = self.feed_forward(hidden_states, im_mask)
675
+ hidden_states = residual + hidden_states
676
+
677
+ outputs = (hidden_states,)
678
+
679
+ if output_attentions:
680
+ outputs += (self_attn_weights,)
681
+
682
+ if use_cache:
683
+ outputs += (present_key_value,)
684
+
685
+ return outputs
686
+
687
+
688
+ InternLM2_START_DOCSTRING = r"""
689
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
690
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
691
+ etc.)
692
+
693
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
694
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
695
+ and behavior.
696
+
697
+ Parameters:
698
+ config ([`InternLM2Config`]):
699
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
700
+ load the weights associated with the model, only the configuration. Check out the
701
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
702
+ """
703
+
704
+
705
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
706
+ @add_start_docstrings(
707
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
708
+ InternLM2_START_DOCSTRING,
709
+ )
710
+ class InternLM2PreTrainedModel(PreTrainedModel):
711
+ config_class = InternLM2Config
712
+ base_model_prefix = "model"
713
+ supports_gradient_checkpointing = True
714
+ _no_split_modules = ["InternLM2DecoderLayer"]
715
+ _skip_keys_device_placement = "past_key_values"
716
+
717
+ def _init_weights(self, module):
718
+ std = self.config.initializer_range
719
+ if isinstance(module, nn.Linear):
720
+ module.weight.data.normal_(mean=0.0, std=std)
721
+ if module.bias is not None:
722
+ module.bias.data.zero_()
723
+ elif isinstance(module, nn.Embedding):
724
+ module.weight.data.normal_(mean=0.0, std=std)
725
+ if module.padding_idx is not None:
726
+ module.weight.data[module.padding_idx].zero_()
727
+
728
+
729
+ InternLM2_INPUTS_DOCSTRING = r"""
730
+ Args:
731
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
732
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
733
+ it.
734
+
735
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
736
+ [`PreTrainedTokenizer.__call__`] for details.
737
+
738
+ [What are input IDs?](../glossary#input-ids)
739
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
740
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
741
+
742
+ - 1 for tokens that are **not masked**,
743
+ - 0 for tokens that are **masked**.
744
+
745
+ [What are attention masks?](../glossary#attention-mask)
746
+
747
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
748
+ [`PreTrainedTokenizer.__call__`] for details.
749
+
750
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
751
+ `past_key_values`).
752
+
753
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
754
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
755
+ information on the default strategy.
756
+
757
+ - 1 indicates the head is **not masked**,
758
+ - 0 indicates the head is **masked**.
759
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
760
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
761
+ config.n_positions - 1]`.
762
+
763
+ [What are position IDs?](../glossary#position-ids)
764
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
765
+ when `config.use_cache=True`):
766
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
767
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
768
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
769
+
770
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
771
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
772
+
773
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
774
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
775
+ of shape `(batch_size, sequence_length)`.
776
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
777
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
778
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
779
+ model's internal embedding lookup matrix.
780
+ use_cache (`bool`, *optional*):
781
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
782
+ `past_key_values`).
783
+ output_attentions (`bool`, *optional*):
784
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
785
+ tensors for more detail.
786
+ output_hidden_states (`bool`, *optional*):
787
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
788
+ more detail.
789
+ return_dict (`bool`, *optional*):
790
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
791
+ """
792
+
793
+
794
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
795
+ @add_start_docstrings(
796
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
797
+ InternLM2_START_DOCSTRING,
798
+ )
799
+ class InternLM2Model(InternLM2PreTrainedModel):
800
+ """
801
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
802
+
803
+ Args:
804
+ config: InternLM2Config
805
+ """
806
+
807
+ _auto_class = "AutoModel"
808
+
809
+ def __init__(self, config: InternLM2Config):
810
+ super().__init__(config)
811
+ self.padding_idx = config.pad_token_id
812
+ self.vocab_size = config.vocab_size
813
+ self.config = config
814
+
815
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
816
+
817
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
818
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
819
+
820
+ self.gradient_checkpointing = False
821
+ # Initialize weights and apply final processing
822
+ self.post_init()
823
+
824
+ def get_input_embeddings(self):
825
+ return self.tok_embeddings
826
+
827
+ def set_input_embeddings(self, value):
828
+ self.tok_embeddings = value
829
+
830
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
831
+ # create causal mask
832
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
833
+ combined_attention_mask = None
834
+ if input_shape[-1] > 1:
835
+ combined_attention_mask = _make_causal_mask(
836
+ input_shape,
837
+ inputs_embeds.dtype,
838
+ device=inputs_embeds.device,
839
+ past_key_values_length=past_key_values_length,
840
+ )
841
+
842
+ if attention_mask is not None:
843
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
844
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
845
+ inputs_embeds.device
846
+ )
847
+ combined_attention_mask = (
848
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
849
+ )
850
+
851
+ return combined_attention_mask
852
+
853
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
854
+ def forward(
855
+ self,
856
+ input_ids: torch.LongTensor = None,
857
+ attention_mask: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.LongTensor] = None,
859
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
860
+ inputs_embeds: Optional[torch.FloatTensor] = None,
861
+ use_cache: Optional[bool] = None,
862
+ output_attentions: Optional[bool] = None,
863
+ output_hidden_states: Optional[bool] = None,
864
+ return_dict: Optional[bool] = None,
865
+ **kwargs
866
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
867
+
868
+ im_mask = kwargs.get('im_mask', None)
869
+
870
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
871
+ output_hidden_states = (
872
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
873
+ )
874
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
875
+
876
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
877
+
878
+ if self.config.attn_implementation == "flash_attention_2":
879
+ _import_flash_attn()
880
+
881
+ # retrieve input_ids and inputs_embeds
882
+ if input_ids is not None and inputs_embeds is not None:
883
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
884
+ elif input_ids is not None:
885
+ batch_size, seq_length = input_ids.shape[:2]
886
+ elif inputs_embeds is not None:
887
+ batch_size, seq_length = inputs_embeds.shape[:2]
888
+ else:
889
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
890
+
891
+ seq_length_with_past = seq_length
892
+ past_key_values_length = 0
893
+ if past_key_values is not None:
894
+ past_key_values_length = past_key_values[0][0].shape[2]
895
+ seq_length_with_past = seq_length_with_past + past_key_values_length
896
+
897
+ if position_ids is None:
898
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
899
+ position_ids = torch.arange(
900
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
901
+ )
902
+ position_ids = position_ids.unsqueeze(0)
903
+
904
+ if inputs_embeds is None:
905
+ inputs_embeds = self.tok_embeddings(input_ids)
906
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool()
907
+
908
+ if self.config.attn_implementation == "flash_attention_2":
909
+ # 2d mask is passed through the layers
910
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
911
+ else:
912
+ if attention_mask is None:
913
+ attention_mask = torch.ones(
914
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
915
+ )
916
+ attention_mask = self._prepare_decoder_attention_mask(
917
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
918
+ )
919
+
920
+ # embed positions
921
+ hidden_states = inputs_embeds
922
+
923
+ if self.gradient_checkpointing and self.training:
924
+ if use_cache:
925
+ logger.warning_once(
926
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
927
+ )
928
+ use_cache = False
929
+
930
+ # decoder layers
931
+ all_hidden_states = () if output_hidden_states else None
932
+ all_self_attns = () if output_attentions else None
933
+ next_decoder_cache = () if use_cache else None
934
+
935
+ for idx, decoder_layer in enumerate(self.layers):
936
+ if output_hidden_states:
937
+ all_hidden_states += (hidden_states,)
938
+
939
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
940
+
941
+ if self.gradient_checkpointing and self.training:
942
+
943
+ def create_custom_forward(module):
944
+ def custom_forward(*inputs):
945
+ # None for past_key_value
946
+ return module(*inputs, output_attentions, None, im_mask)
947
+
948
+ return custom_forward
949
+
950
+ layer_outputs = torch.utils.checkpoint.checkpoint(
951
+ create_custom_forward(decoder_layer),
952
+ hidden_states,
953
+ attention_mask,
954
+ position_ids,
955
+ None,
956
+ )
957
+ else:
958
+ layer_outputs = decoder_layer(
959
+ hidden_states,
960
+ attention_mask=attention_mask,
961
+ position_ids=position_ids,
962
+ past_key_value=past_key_value,
963
+ output_attentions=output_attentions,
964
+ use_cache=use_cache,
965
+ im_mask=im_mask,
966
+ )
967
+
968
+ hidden_states = layer_outputs[0]
969
+
970
+ if use_cache:
971
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
972
+
973
+ if output_attentions:
974
+ all_self_attns += (layer_outputs[1],)
975
+
976
+ hidden_states = self.norm(hidden_states)
977
+
978
+ # add hidden states from the last decoder layer
979
+ if output_hidden_states:
980
+ all_hidden_states += (hidden_states,)
981
+
982
+ next_cache = next_decoder_cache if use_cache else None
983
+ if not return_dict:
984
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
985
+ return BaseModelOutputWithPast(
986
+ last_hidden_state=hidden_states,
987
+ past_key_values=next_cache,
988
+ hidden_states=all_hidden_states,
989
+ attentions=all_self_attns,
990
+ )
modeling_internlm_xcomposer2.py ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """PyTorch InternLMXComposer2 model."""
18
+ import copy
19
+ import queue
20
+ import threading
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from PIL import Image
26
+ from torch import nn
27
+ from torch.nn import CrossEntropyLoss
28
+ from torchvision import transforms
29
+ from torchvision.transforms.functional import InterpolationMode
30
+ from transformers.modeling_outputs import CausalLMOutputWithPast
31
+ from transformers.utils import (add_start_docstrings_to_model_forward,
32
+ replace_return_docstrings)
33
+
34
+ try:
35
+ from transformers.generation.streamers import BaseStreamer
36
+ except: # noqa # pylint: disable=bare-except
37
+ BaseStreamer = None
38
+
39
+ from .build_mlp import build_vision_projector, build_vision_tower
40
+ from .ixc_utils import HD_transform
41
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
42
+ from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
43
+ InternLM2PreTrainedModel)
44
+
45
+ _CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
46
+
47
+
48
+ class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
49
+ _auto_class = 'AutoModelForCausalLM'
50
+
51
+ _tied_weights_keys = ['output.weight']
52
+
53
+ def __init__(self, config):
54
+ super().__init__(config)
55
+ self.model = InternLM2Model(config)
56
+ self.vocab_size = config.vocab_size
57
+ self.output = nn.Linear(
58
+ config.hidden_size, config.vocab_size, bias=False)
59
+ self.tokenizer = None
60
+
61
+ self.max_length = config.max_length
62
+ print(f'Set max length to {self.max_length}')
63
+ # Initialize weights and apply final processing
64
+ self.post_init()
65
+ self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
66
+ self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
67
+
68
+ self.vit = build_vision_tower()
69
+ self.vision_proj = build_vision_projector()
70
+
71
+ self.vis_processor = transforms.Compose([
72
+ transforms.ToTensor(),
73
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
74
+ (0.26862954, 0.26130258, 0.27577711)),
75
+ ])
76
+
77
+ def _set_gradient_checkpointing(self, module, value=False):
78
+ if isinstance(module, InternLM2Model):
79
+ module.gradient_checkpointing = value
80
+ if value:
81
+ self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
82
+
83
+ def get_input_embeddings(self):
84
+ return self.model.tok_embeddings
85
+
86
+ def set_input_embeddings(self, value):
87
+ self.model.tok_embeddings = value
88
+
89
+ def get_output_embeddings(self):
90
+ return self.output
91
+
92
+ def set_output_embeddings(self, new_embeddings):
93
+ self.output = new_embeddings
94
+
95
+ def set_decoder(self, decoder):
96
+ self.model = decoder
97
+
98
+ def get_decoder(self):
99
+ return self.model
100
+
101
+ def encode_text(self, text, add_special_tokens=False):
102
+ token = self.tokenizer(
103
+ text, return_tensors='pt',
104
+ add_special_tokens=add_special_tokens).input_ids.to(self.device)
105
+ embs = self.model.tok_embeddings(token)
106
+ return embs
107
+
108
+ def encode_img(self, image, hd_num=25):
109
+ if image is None:
110
+ return None
111
+ if isinstance(image, str):
112
+ image = Image.open(image).convert('RGB')
113
+ image = HD_transform(image, hd_num = hd_num)
114
+ image = self.vis_processor(image).unsqueeze(0).to(self.device)
115
+
116
+ img_embeds, atts_img, img_target = self.img2emb(image)
117
+ return img_embeds
118
+
119
+ def img2emb(self, image):
120
+ img_embeds, img_split = self.vit([image],
121
+ self.plora_glb_GN, self.plora_sub_GN)
122
+ if len(img_split) > 1:
123
+ print ('Batch Size >1 is not supported.')
124
+ assert 0
125
+ # print (img_embeds.shape)
126
+ img_embeds = self.vision_proj(img_embeds)
127
+ atts_img = torch.ones(
128
+ img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
129
+
130
+ img_target = torch.ones(
131
+ img_embeds.size()[:2], dtype=torch.long).to(
132
+ img_embeds.device) * -100
133
+
134
+ return img_embeds, atts_img, img_target
135
+
136
+ def prompt_wrap(self, img_embeds, prompt):
137
+ batch_size = img_embeds.shape[0]
138
+ p_before, p_after = prompt.split('<ImageHere>')
139
+ p_before_tokens = self.tokenizer(
140
+ p_before, return_tensors='pt',
141
+ add_special_tokens=True).to(img_embeds.device)
142
+
143
+ p_before_embeds = self.model.tok_embeddings(
144
+ p_before_tokens.input_ids).expand(batch_size, -1, -1)
145
+ wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
146
+
147
+ wrapped_atts_img = torch.ones(
148
+ wrapped_img_embeds.size()[:-1],
149
+ dtype=torch.long).to(img_embeds.device)
150
+
151
+ wrapped_target = torch.ones(
152
+ batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
153
+ img_embeds.device) * -100
154
+
155
+ return wrapped_img_embeds, wrapped_atts_img, wrapped_target
156
+
157
+ def text2emb(self, text, add_special=False):
158
+ to_regress_tokens = self.tokenizer(
159
+ text,
160
+ return_tensors='pt',
161
+ padding='longest',
162
+ truncation=True,
163
+ max_length=self.max_length,
164
+ add_special_tokens=add_special).to(self.device)
165
+
166
+ targets = self.mask_human_targets(to_regress_tokens.input_ids)
167
+ targets = targets.to(self.device)
168
+ return to_regress_tokens, targets
169
+
170
+ def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction):
171
+ prompt = ''
172
+ if meta_instruction:
173
+ prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
174
+ for record in history:
175
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
176
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
177
+
178
+ im_len = image.shape[1]
179
+ image_nums = len(image)
180
+ parts = prompt.split('<ImageHere>')
181
+ wrap_embeds, wrap_im_mask = [], []
182
+ temp_len = 0
183
+
184
+ if len(parts) != image_nums + 1:
185
+ raise ValueError('Invalid <ImageHere> prompt format.')
186
+
187
+ for idx, part in enumerate(parts):
188
+ if len(part) > 0:
189
+ part_tokens = tokenizer(part, return_tensors='pt').to(self.device)
190
+ part_embeds = self.model.tok_embeddings(
191
+ part_tokens.input_ids)
192
+ wrap_embeds.append(part_embeds)
193
+ wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
194
+ temp_len += part_embeds.shape[1]
195
+ if idx < image_nums:
196
+ wrap_embeds.append(image[idx].unsqueeze(0))
197
+ wrap_im_mask.append(torch.ones(1, image[idx].shape[0]))
198
+ temp_len += im_len
199
+
200
+ if temp_len > self.max_length:
201
+ break
202
+
203
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
204
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
205
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
206
+ wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool()
207
+ inputs = {
208
+ 'inputs_embeds': wrap_embeds
209
+ }
210
+ return inputs, wrap_im_mask
211
+
212
+ def interleav_wrap(self, img_list, text_list):
213
+ wrap_embeds_list, wrap_atts_list = [], []
214
+ wrap_target_list, wrap_im_mask_list = [], []
215
+
216
+ for image, text in zip(img_list, text_list):
217
+ img_embeds, atts_img, img_target = self.img2emb(image)
218
+ text = text[0]
219
+ parts = text.split('<ImageHere>')
220
+ wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], []
221
+ temp_len = 0
222
+ image_nums, im_len = img_embeds.shape[:2]
223
+ need_bos = True
224
+ for idx, part in enumerate(parts):
225
+ if len(part) > 0:
226
+ part_tokens = self.tokenizer(
227
+ part,
228
+ return_tensors='pt',
229
+ padding='longest',
230
+ add_special_tokens=need_bos).to(self.device)
231
+ if need_bos:
232
+ need_bos = False
233
+ wrap_tokens.append(part_tokens.input_ids)
234
+ part_embeds = self.model.tok_embeddings(
235
+ part_tokens.input_ids)
236
+ wrap_embeds.append(part_embeds)
237
+ wrap_atts.append(part_tokens.attention_mask)
238
+ wrap_im_mask.append(
239
+ torch.zeros(part_embeds.shape[:2]).to(self.device))
240
+
241
+ temp_len += part_embeds.shape[1]
242
+ if idx < image_nums:
243
+ wrap_tokens.append(img_target[idx].unsqueeze(0))
244
+ wrap_embeds.append(img_embeds[idx].unsqueeze(0))
245
+ wrap_atts.append(atts_img[idx].unsqueeze(0))
246
+ wrap_im_mask.append(
247
+ torch.ones_like(atts_img[idx].unsqueeze(0)))
248
+
249
+ temp_len += im_len
250
+ if temp_len > self.max_length:
251
+ break
252
+
253
+ wrap_tokens = torch.cat(wrap_tokens, dim=1)
254
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
255
+ wrap_atts = torch.cat(wrap_atts, dim=1)
256
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
257
+
258
+ wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
259
+
260
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
261
+ wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
262
+ wrap_target = wrap_target[:, :self.max_length].to(self.device)
263
+ wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device)
264
+
265
+ wrap_embeds_list.append(wrap_embeds)
266
+ wrap_atts_list.append(wrap_atts)
267
+ wrap_target_list.append(wrap_target)
268
+ wrap_im_mask_list.append(wrap_im_mask)
269
+
270
+ wrap_embeds = torch.cat(wrap_embeds_list)
271
+ wrap_atts = torch.cat(wrap_atts_list)
272
+ wrap_target = torch.cat(wrap_target_list)
273
+ wrap_im_mask = torch.cat(wrap_im_mask_list)
274
+ return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask
275
+
276
+ def mask_human_targets(self, input_ids, pure=False):
277
+ target_batch = []
278
+ for bs in range(input_ids.shape[0]):
279
+ ids = input_ids[bs]
280
+ targets = copy.deepcopy(ids)
281
+ end_count = 0
282
+ last_eoa = 0
283
+ for i, temp_id in enumerate(ids):
284
+ if temp_id == 92542:
285
+ if end_count % 2 == 0:
286
+ targets[last_eoa:i + 6] = -100
287
+ else:
288
+ last_eoa = i + 1
289
+ end_count += 1
290
+ # # eos and following pad
291
+ elif temp_id == 2:
292
+ # loss on eos, but not on pad
293
+ targets[i + 1:] = -100
294
+ break
295
+ # trunction, end at last question
296
+ if temp_id != 2 and end_count % 2 == 0:
297
+ # mask all after the last answer
298
+ targets[last_eoa + 1:] = -100
299
+ target_batch.append(targets.unsqueeze(0))
300
+ target_batch = torch.cat(target_batch, dim=0)
301
+ return target_batch
302
+
303
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
304
+ @replace_return_docstrings(
305
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
306
+ def forward(self,
307
+ input_ids: torch.LongTensor = None,
308
+ attention_mask: Optional[torch.Tensor] = None,
309
+ position_ids: Optional[torch.LongTensor] = None,
310
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
311
+ inputs_embeds: Optional[torch.FloatTensor] = None,
312
+ labels: Optional[torch.LongTensor] = None,
313
+ use_cache: Optional[bool] = None,
314
+ output_attentions: Optional[bool] = None,
315
+ output_hidden_states: Optional[bool] = None,
316
+ return_dict: Optional[bool] = None,
317
+ **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
318
+ r"""
319
+ Args:
320
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
321
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
322
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
323
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
324
+ Returns:
325
+ """
326
+
327
+ samples = kwargs.get('samples', None)
328
+ if samples:
329
+ if samples['data_type'][0] == 'text':
330
+ has_img = False
331
+ elif samples['data_type'][0] == 'multi':
332
+ has_img = True
333
+ else:
334
+ raise NotImplementedError
335
+
336
+ # encode text
337
+ text = samples['text_input']
338
+ # encode image
339
+ if has_img:
340
+ image = samples['image']
341
+ to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
342
+ image, text)
343
+ else:
344
+ to_regress_tokens, targets = self.text2emb(
345
+ text, add_special=True)
346
+ to_regress_embeds = self.model.tok_embeddings(
347
+ to_regress_tokens.input_ids)
348
+ attention_mask = to_regress_tokens.attention_mask
349
+ im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
350
+
351
+ inputs_embeds = to_regress_embeds[:, :self.max_length]
352
+ attention_mask = attention_mask[:, :self.max_length]
353
+ targets = targets[:, :self.max_length]
354
+ im_mask = im_mask[:, :self.max_length].bool()
355
+ labels = targets
356
+ else:
357
+ im_mask = kwargs.get('im_mask', None)
358
+ if im_mask is None and inputs_embeds is not None:
359
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
360
+ inputs_embeds.device)
361
+ im_mask = im_mask.bool()
362
+
363
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
364
+ output_hidden_states = (
365
+ output_hidden_states if output_hidden_states is not None else
366
+ self.config.output_hidden_states)
367
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
368
+
369
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
370
+ outputs = self.model(
371
+ input_ids=input_ids,
372
+ attention_mask=attention_mask,
373
+ position_ids=position_ids,
374
+ past_key_values=past_key_values,
375
+ inputs_embeds=inputs_embeds,
376
+ use_cache=use_cache,
377
+ output_attentions=output_attentions,
378
+ output_hidden_states=output_hidden_states,
379
+ return_dict=return_dict,
380
+ im_mask=im_mask,
381
+ )
382
+
383
+ hidden_states = outputs[0]
384
+ logits = self.output(hidden_states)
385
+ logits = logits.float()
386
+
387
+ loss = None
388
+ if labels is not None:
389
+ # Shift so that tokens < n predict n
390
+ shift_logits = logits[..., :-1, :].contiguous()
391
+ shift_labels = labels[..., 1:].contiguous()
392
+ # Flatten the tokens
393
+ loss_fct = CrossEntropyLoss()
394
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
395
+ shift_labels = shift_labels.view(-1)
396
+ # Enable model parallelism
397
+ shift_labels = shift_labels.to(shift_logits.device)
398
+ loss = loss_fct(shift_logits, shift_labels)
399
+
400
+ if not return_dict:
401
+ output = (logits, ) + outputs[1:]
402
+ return (loss, ) + output if loss is not None else output
403
+
404
+ return CausalLMOutputWithPast(
405
+ loss=loss,
406
+ logits=logits,
407
+ past_key_values=outputs.past_key_values,
408
+ hidden_states=outputs.hidden_states,
409
+ attentions=outputs.attentions,
410
+ )
411
+
412
+ def prepare_inputs_for_generation(self,
413
+ input_ids,
414
+ past_key_values=None,
415
+ attention_mask=None,
416
+ inputs_embeds=None,
417
+ im_mask=None,
418
+ **kwargs):
419
+ if past_key_values is not None:
420
+ past_length = past_key_values[0][0].shape[2]
421
+
422
+ # Some generation methods already pass only the last input ID
423
+ if input_ids.shape[1] > past_length:
424
+ remove_prefix_length = past_length
425
+ else:
426
+ # Default to old behavior: keep only final ID
427
+ remove_prefix_length = input_ids.shape[1] - 1
428
+
429
+ input_ids = input_ids[:, remove_prefix_length:]
430
+
431
+ position_ids = kwargs.get('position_ids', None)
432
+ if attention_mask is not None and position_ids is None:
433
+ # create position_ids on the fly for batch generation
434
+ position_ids = attention_mask.long().cumsum(-1) - 1
435
+ position_ids.masked_fill_(attention_mask == 0, 1)
436
+ if past_key_values:
437
+ position_ids = position_ids[:, -input_ids.shape[1]:]
438
+
439
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
440
+ if inputs_embeds is not None and past_key_values is None:
441
+ model_inputs = {'inputs_embeds': inputs_embeds}
442
+ else:
443
+ model_inputs = {'input_ids': input_ids}
444
+
445
+ im_mask = im_mask
446
+
447
+ model_inputs.update({
448
+ 'position_ids': position_ids,
449
+ 'past_key_values': past_key_values,
450
+ 'use_cache': kwargs.get('use_cache'),
451
+ 'attention_mask': attention_mask,
452
+ 'im_mask': im_mask,
453
+ })
454
+ return model_inputs
455
+
456
+ @staticmethod
457
+ def _reorder_cache(past_key_values, beam_idx):
458
+ reordered_past = ()
459
+ for layer_past in past_key_values:
460
+ reordered_past += (tuple(
461
+ past_state.index_select(0, beam_idx.to(past_state.device))
462
+ for past_state in layer_past), )
463
+ return reordered_past
464
+
465
+ def build_inputs(self,
466
+ tokenizer,
467
+ query: str,
468
+ history: List[Tuple[str, str]] = [],
469
+ meta_instruction=''):
470
+ prompt = ''
471
+ if meta_instruction:
472
+ prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
473
+ else:
474
+ prompt += '<s>'
475
+ for record in history:
476
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
477
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
478
+ return tokenizer([prompt], return_tensors='pt')
479
+
480
+ @torch.no_grad()
481
+ def chat(
482
+ self,
483
+ tokenizer,
484
+ query: str,
485
+ image: torch.Tensor = None,
486
+ hd_num: int = 25,
487
+ history: List[Tuple[str, str]] = [],
488
+ streamer: Optional[BaseStreamer] = None,
489
+ max_new_tokens: int = 1024,
490
+ do_sample: bool = True,
491
+ num_beams: int = 1,
492
+ temperature: float = 1.0,
493
+ top_p: float = 0.8,
494
+ repetition_penalty: float=1.005,
495
+ meta_instruction:
496
+ str = 'You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n'
497
+ '- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
498
+ '- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n'
499
+ '- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.',
500
+ **kwargs,
501
+ ):
502
+ if image is None:
503
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
504
+ im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool()
505
+ else:
506
+ image = self.encode_img(image, hd_num=hd_num)
507
+ inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction)
508
+ inputs = {
509
+ k: v.to(self.device)
510
+ for k, v in inputs.items() if torch.is_tensor(v)
511
+ }
512
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
513
+ eos_token_id = [
514
+ tokenizer.eos_token_id,
515
+ tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
516
+ ]
517
+ outputs = self.generate(
518
+ **inputs,
519
+ streamer=streamer,
520
+ max_new_tokens=max_new_tokens,
521
+ num_beams=num_beams,
522
+ do_sample=do_sample,
523
+ temperature=temperature,
524
+ top_p=top_p,
525
+ eos_token_id=eos_token_id,
526
+ repetition_penalty=repetition_penalty,
527
+ im_mask=im_mask,
528
+ **kwargs,
529
+ )
530
+ if image is None:
531
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
532
+ else:
533
+ outputs = outputs[0].cpu().tolist()
534
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
535
+ response = response.split('[UNUSED_TOKEN_145]')[0]
536
+ history = history + [(query, response)]
537
+ return response, history
538
+
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:931a595f2d7313f45bb4c6f5a72a0e4dd543e95faf8cb938ddb015d3127741bd
3
+ size 9999796735
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41661910102d198735f94785200dd46493e29d847e37fdf081a534f4d99ee994
3
+ size 7195541729
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,949 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17194999808
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
7
+ "model.layers.0.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.0.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.0.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.1.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.1.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.1.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.1.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.1.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.1.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.10.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.10.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.10.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.10.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.10.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.10.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.10.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.10.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.10.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.10.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.10.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.10.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.10.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.10.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.10.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.10.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.10.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.11.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.11.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.11.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.11.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.11.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.11.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.11.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.11.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.11.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.11.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.11.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.11.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.11.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.11.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.11.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.11.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.11.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.12.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.12.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.12.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.12.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.12.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.12.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.12.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.12.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.12.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.12.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.12.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.12.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.12.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.12.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.12.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.12.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.12.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.13.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.13.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.13.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.13.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.13.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.13.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.13.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.13.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.13.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.13.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.13.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.13.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.13.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.13.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.13.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.13.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.13.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.14.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.14.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.14.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.14.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.14.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.14.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.14.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.14.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.14.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.14.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.14.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.14.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.14.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.14.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.14.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.14.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.14.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.15.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.15.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.15.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.15.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.15.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.15.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.15.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.15.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.15.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.15.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.15.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.15.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.15.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.15.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.15.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.15.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.15.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.16.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.16.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.16.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.16.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.16.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.16.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.16.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.16.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.16.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.16.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.16.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.16.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.16.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.16.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.16.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.16.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.16.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.17.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.17.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.17.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.17.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.17.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.17.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.17.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.17.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.17.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.17.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.17.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.17.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.17.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.17.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.17.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.17.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.17.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.18.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.18.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.18.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
179
+ "model.layers.18.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
180
+ "model.layers.18.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
181
+ "model.layers.18.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
182
+ "model.layers.18.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
183
+ "model.layers.18.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
184
+ "model.layers.18.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
185
+ "model.layers.18.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
186
+ "model.layers.18.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
187
+ "model.layers.18.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
188
+ "model.layers.18.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
189
+ "model.layers.18.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
190
+ "model.layers.18.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
191
+ "model.layers.18.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
192
+ "model.layers.18.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
193
+ "model.layers.19.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
194
+ "model.layers.19.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
195
+ "model.layers.19.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
196
+ "model.layers.19.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
197
+ "model.layers.19.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
198
+ "model.layers.19.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
199
+ "model.layers.19.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.19.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
201
+ "model.layers.19.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
202
+ "model.layers.19.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
203
+ "model.layers.19.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.19.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.19.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.19.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.19.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.19.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
209
+ "model.layers.19.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.2.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
211
+ "model.layers.2.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
212
+ "model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
213
+ "model.layers.2.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
214
+ "model.layers.2.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
215
+ "model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.2.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.2.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.2.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.2.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.2.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.2.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.2.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.2.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
225
+ "model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
226
+ "model.layers.2.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
227
+ "model.layers.20.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.20.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.20.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.20.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.20.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.20.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.20.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.20.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.20.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.20.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.20.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.20.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.20.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.20.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.20.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.20.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
243
+ "model.layers.20.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
244
+ "model.layers.21.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
245
+ "model.layers.21.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
246
+ "model.layers.21.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
247
+ "model.layers.21.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
248
+ "model.layers.21.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.21.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.21.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.21.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.21.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.21.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.21.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.21.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.21.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.21.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.21.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.21.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.21.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.22.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.22.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.22.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.22.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.22.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.22.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.22.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.22.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
269
+ "model.layers.22.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
270
+ "model.layers.22.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
271
+ "model.layers.22.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
272
+ "model.layers.22.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
273
+ "model.layers.22.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
274
+ "model.layers.22.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
275
+ "model.layers.22.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
276
+ "model.layers.22.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
277
+ "model.layers.22.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
278
+ "model.layers.23.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
279
+ "model.layers.23.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
280
+ "model.layers.23.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
281
+ "model.layers.23.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
282
+ "model.layers.23.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
283
+ "model.layers.23.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
284
+ "model.layers.23.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
285
+ "model.layers.23.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
286
+ "model.layers.23.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
287
+ "model.layers.23.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
288
+ "model.layers.23.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
289
+ "model.layers.23.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
290
+ "model.layers.23.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
291
+ "model.layers.23.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
292
+ "model.layers.23.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
293
+ "model.layers.23.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
294
+ "model.layers.23.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
295
+ "model.layers.24.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
296
+ "model.layers.24.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
297
+ "model.layers.24.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
298
+ "model.layers.24.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
299
+ "model.layers.24.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
300
+ "model.layers.24.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
301
+ "model.layers.24.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
302
+ "model.layers.24.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
303
+ "model.layers.24.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
304
+ "model.layers.24.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
305
+ "model.layers.24.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
306
+ "model.layers.24.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
307
+ "model.layers.24.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
308
+ "model.layers.24.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
309
+ "model.layers.24.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
310
+ "model.layers.24.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
311
+ "model.layers.24.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
312
+ "model.layers.25.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
313
+ "model.layers.25.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
314
+ "model.layers.25.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
315
+ "model.layers.25.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
316
+ "model.layers.25.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
317
+ "model.layers.25.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
318
+ "model.layers.25.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
319
+ "model.layers.25.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
320
+ "model.layers.25.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
321
+ "model.layers.25.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
322
+ "model.layers.25.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
323
+ "model.layers.25.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
324
+ "model.layers.25.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
325
+ "model.layers.25.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
326
+ "model.layers.25.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
327
+ "model.layers.25.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
328
+ "model.layers.25.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
329
+ "model.layers.26.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
330
+ "model.layers.26.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
331
+ "model.layers.26.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
332
+ "model.layers.26.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
333
+ "model.layers.26.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
334
+ "model.layers.26.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
335
+ "model.layers.26.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
336
+ "model.layers.26.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
337
+ "model.layers.26.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
338
+ "model.layers.26.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
339
+ "model.layers.26.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
340
+ "model.layers.26.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
341
+ "model.layers.26.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
342
+ "model.layers.26.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
343
+ "model.layers.26.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
344
+ "model.layers.26.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
345
+ "model.layers.26.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
346
+ "model.layers.27.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
347
+ "model.layers.27.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
348
+ "model.layers.27.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
349
+ "model.layers.27.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
350
+ "model.layers.27.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
351
+ "model.layers.27.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
352
+ "model.layers.27.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
353
+ "model.layers.27.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
354
+ "model.layers.27.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
355
+ "model.layers.27.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
356
+ "model.layers.27.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
357
+ "model.layers.27.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
358
+ "model.layers.27.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
359
+ "model.layers.27.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
360
+ "model.layers.27.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
361
+ "model.layers.27.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
362
+ "model.layers.27.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
363
+ "model.layers.28.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
364
+ "model.layers.28.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
365
+ "model.layers.28.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
366
+ "model.layers.28.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
367
+ "model.layers.28.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
368
+ "model.layers.28.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
369
+ "model.layers.28.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
370
+ "model.layers.28.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
371
+ "model.layers.28.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
372
+ "model.layers.28.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
373
+ "model.layers.28.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
374
+ "model.layers.28.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
375
+ "model.layers.28.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
376
+ "model.layers.28.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
377
+ "model.layers.28.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
378
+ "model.layers.28.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
379
+ "model.layers.28.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
380
+ "model.layers.29.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
381
+ "model.layers.29.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
382
+ "model.layers.29.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
383
+ "model.layers.29.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
384
+ "model.layers.29.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
385
+ "model.layers.29.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
386
+ "model.layers.29.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
387
+ "model.layers.29.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
388
+ "model.layers.29.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
389
+ "model.layers.29.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
390
+ "model.layers.29.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
391
+ "model.layers.29.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
392
+ "model.layers.29.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
393
+ "model.layers.29.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
394
+ "model.layers.29.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
395
+ "model.layers.29.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
396
+ "model.layers.29.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
397
+ "model.layers.3.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
398
+ "model.layers.3.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
399
+ "model.layers.3.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
400
+ "model.layers.3.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
401
+ "model.layers.3.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
402
+ "model.layers.3.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
403
+ "model.layers.3.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
404
+ "model.layers.3.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
405
+ "model.layers.3.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
406
+ "model.layers.3.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
407
+ "model.layers.3.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
408
+ "model.layers.3.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
409
+ "model.layers.3.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
410
+ "model.layers.3.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
411
+ "model.layers.3.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
412
+ "model.layers.3.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
413
+ "model.layers.3.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
414
+ "model.layers.30.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
415
+ "model.layers.30.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
416
+ "model.layers.30.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
417
+ "model.layers.30.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
418
+ "model.layers.30.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
419
+ "model.layers.30.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
420
+ "model.layers.30.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
421
+ "model.layers.30.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
422
+ "model.layers.30.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
423
+ "model.layers.30.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
424
+ "model.layers.30.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
425
+ "model.layers.30.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
426
+ "model.layers.30.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
427
+ "model.layers.30.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
428
+ "model.layers.30.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
429
+ "model.layers.30.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
430
+ "model.layers.30.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
431
+ "model.layers.31.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
432
+ "model.layers.31.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
433
+ "model.layers.31.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
434
+ "model.layers.31.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
435
+ "model.layers.31.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
436
+ "model.layers.31.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
437
+ "model.layers.31.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
438
+ "model.layers.31.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
439
+ "model.layers.31.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
440
+ "model.layers.31.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
441
+ "model.layers.31.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
442
+ "model.layers.31.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
443
+ "model.layers.31.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
444
+ "model.layers.31.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
445
+ "model.layers.31.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
446
+ "model.layers.31.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
447
+ "model.layers.31.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
448
+ "model.layers.4.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
449
+ "model.layers.4.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
450
+ "model.layers.4.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
451
+ "model.layers.4.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
452
+ "model.layers.4.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
453
+ "model.layers.4.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
454
+ "model.layers.4.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
455
+ "model.layers.4.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
456
+ "model.layers.4.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
457
+ "model.layers.4.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
458
+ "model.layers.4.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
459
+ "model.layers.4.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
460
+ "model.layers.4.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
461
+ "model.layers.4.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
462
+ "model.layers.4.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
463
+ "model.layers.4.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
464
+ "model.layers.4.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
465
+ "model.layers.5.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
466
+ "model.layers.5.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
467
+ "model.layers.5.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
468
+ "model.layers.5.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
469
+ "model.layers.5.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
470
+ "model.layers.5.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
471
+ "model.layers.5.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
472
+ "model.layers.5.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
473
+ "model.layers.5.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
474
+ "model.layers.5.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
475
+ "model.layers.5.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
476
+ "model.layers.5.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
477
+ "model.layers.5.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
478
+ "model.layers.5.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
479
+ "model.layers.5.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
480
+ "model.layers.5.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
481
+ "model.layers.5.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
482
+ "model.layers.6.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
483
+ "model.layers.6.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
484
+ "model.layers.6.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
485
+ "model.layers.6.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
486
+ "model.layers.6.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
487
+ "model.layers.6.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
488
+ "model.layers.6.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
489
+ "model.layers.6.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
490
+ "model.layers.6.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
491
+ "model.layers.6.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
492
+ "model.layers.6.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
493
+ "model.layers.6.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
494
+ "model.layers.6.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
495
+ "model.layers.6.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
496
+ "model.layers.6.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
497
+ "model.layers.6.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
498
+ "model.layers.6.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
499
+ "model.layers.7.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
500
+ "model.layers.7.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
501
+ "model.layers.7.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
502
+ "model.layers.7.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
503
+ "model.layers.7.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
504
+ "model.layers.7.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
505
+ "model.layers.7.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
506
+ "model.layers.7.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
507
+ "model.layers.7.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
508
+ "model.layers.7.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
509
+ "model.layers.7.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
510
+ "model.layers.7.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
511
+ "model.layers.7.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
512
+ "model.layers.7.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
513
+ "model.layers.7.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
514
+ "model.layers.7.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
515
+ "model.layers.7.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
516
+ "model.layers.8.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
517
+ "model.layers.8.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
518
+ "model.layers.8.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
519
+ "model.layers.8.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
520
+ "model.layers.8.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
521
+ "model.layers.8.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
522
+ "model.layers.8.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
523
+ "model.layers.8.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
524
+ "model.layers.8.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
525
+ "model.layers.8.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
526
+ "model.layers.8.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
527
+ "model.layers.8.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
528
+ "model.layers.8.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
529
+ "model.layers.8.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
530
+ "model.layers.8.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
531
+ "model.layers.8.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
532
+ "model.layers.8.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
533
+ "model.layers.9.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
534
+ "model.layers.9.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
535
+ "model.layers.9.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
536
+ "model.layers.9.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
537
+ "model.layers.9.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
538
+ "model.layers.9.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
539
+ "model.layers.9.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
540
+ "model.layers.9.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
541
+ "model.layers.9.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
542
+ "model.layers.9.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
543
+ "model.layers.9.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
544
+ "model.layers.9.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
545
+ "model.layers.9.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
546
+ "model.layers.9.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
547
+ "model.layers.9.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
548
+ "model.layers.9.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
549
+ "model.layers.9.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
550
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin",
551
+ "model.tok_embeddings.weight": "pytorch_model-00001-of-00002.bin",
552
+ "output.weight": "pytorch_model-00002-of-00002.bin",
553
+ "plora_glb_GN": "pytorch_model-00001-of-00002.bin",
554
+ "plora_sub_GN": "pytorch_model-00001-of-00002.bin",
555
+ "vision_proj.0.bias": "pytorch_model-00002-of-00002.bin",
556
+ "vision_proj.0.weight": "pytorch_model-00002-of-00002.bin",
557
+ "vision_proj.2.bias": "pytorch_model-00002-of-00002.bin",
558
+ "vision_proj.2.weight": "pytorch_model-00002-of-00002.bin",
559
+ "vit.vision_tower.vision_model.embeddings.class_embedding": "pytorch_model-00002-of-00002.bin",
560
+ "vit.vision_tower.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00002-of-00002.bin",
561
+ "vit.vision_tower.vision_model.embeddings.position_embedding.weight": "pytorch_model-00002-of-00002.bin",
562
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
563
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
564
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
565
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
566
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
567
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
568
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
569
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
570
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
571
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
572
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
573
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
574
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
575
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
576
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
577
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
578
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
579
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
580
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
581
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
582
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
583
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
584
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
585
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
586
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
587
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
588
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
589
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
590
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
591
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
592
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
593
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
594
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
595
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
596
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
597
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
598
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
599
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
600
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
601
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
602
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
603
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
604
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
605
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
606
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
607
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
608
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
609
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
610
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
611
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
612
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
613
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
614
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
615
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
616
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
617
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
618
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
619
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
620
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
621
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
622
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
623
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
624
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
625
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
626
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
627
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
628
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
629
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
630
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
631
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
632
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
633
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
634
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
635
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
636
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
637
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
638
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
639
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
640
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
641
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
642
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
643
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
644
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
645
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
646
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
647
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
648
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
649
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
650
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
651
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
652
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
653
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
654
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
655
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
656
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
657
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
658
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
659
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
660
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
661
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
662
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
663
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
664
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
665
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
666
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
667
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
668
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
669
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
670
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
671
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
672
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
673
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
674
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
675
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
676
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
677
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
678
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
679
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
680
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
681
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
682
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
683
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
684
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
685
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
686
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
687
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
688
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
689
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
690
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
691
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
692
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
693
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
694
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
695
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
696
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
697
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
698
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
699
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
700
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
701
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
702
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
703
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
704
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
705
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
706
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
707
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
708
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
709
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
710
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
711
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
712
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
713
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
714
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
715
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
716
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
717
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
718
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
719
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
720
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
721
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
722
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
723
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
724
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
725
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
726
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
727
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
728
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
729
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
730
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
731
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
732
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
733
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
734
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
735
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
736
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
737
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
738
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
739
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
740
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
741
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
742
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
743
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
744
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
745
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
746
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
747
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
748
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
749
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
750
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
751
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
752
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
753
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
754
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
755
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
756
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
757
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
758
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
759
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
760
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
761
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
762
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
763
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
764
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
765
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
766
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
767
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
768
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
769
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
770
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
771
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
772
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
773
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
774
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
775
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
776
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
777
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
778
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
779
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
780
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
781
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
782
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
783
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
784
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
785
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
786
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
787
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
788
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
789
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
790
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
791
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
792
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
793
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
794
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
795
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
796
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
797
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
798
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
799
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
800
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
801
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
802
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
803
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
804
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
805
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
806
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
807
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
808
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
809
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
810
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
811
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
812
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
813
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
814
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
815
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
816
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
817
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
818
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
819
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
820
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
821
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
822
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
823
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
824
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
825
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
826
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
827
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
828
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
829
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
830
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
831
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
832
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
833
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
834
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
835
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
836
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
837
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
838
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
839
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
840
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
841
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
842
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
843
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
844
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
845
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
846
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
847
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
848
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
849
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
850
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
851
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
852
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
853
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
854
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
855
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
856
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
857
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
858
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
859
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
860
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
861
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
862
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
863
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
864
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
865
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
866
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
867
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
868
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
869
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
870
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
871
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
872
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
873
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
874
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
875
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
876
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
877
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
878
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
879
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
880
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
881
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
882
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
883
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
884
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
885
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
886
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
887
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
888
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
889
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
890
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
891
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
892
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
893
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
894
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
895
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
896
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
897
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
898
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
899
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
900
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
901
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
902
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
903
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
904
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
905
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
906
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
907
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
908
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
909
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
910
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
911
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
912
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
913
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
914
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
915
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
916
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
917
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
918
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
919
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
920
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
921
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
922
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
923
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
924
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
925
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
926
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
927
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
928
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
929
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
930
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
931
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
932
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
933
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
934
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
935
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
936
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
937
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
938
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
939
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
940
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
941
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
942
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
943
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
944
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
945
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
946
+ "vit.vision_tower.vision_model.pre_layrnorm.bias": "pytorch_model-00002-of-00002.bin",
947
+ "vit.vision_tower.vision_model.pre_layrnorm.weight": "pytorch_model-00002-of-00002.bin"
948
+ }
949
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>"
9
+ ],
10
+ "bos_token": {
11
+ "content": "<s>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "eos_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "</s>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "unk_token": {
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ }
75
+ },
76
+ "additional_special_tokens": [
77
+ "<|im_start|>",
78
+ "<|im_end|>",
79
+ "<|action_start|>",
80
+ "<|action_end|>",
81
+ "<|interpreter|>",
82
+ "<|plugin|>"
83
+ ],
84
+ "auto_map": {
85
+ "AutoTokenizer": [
86
+ "tokenization_internlm2.InternLM2Tokenizer",
87
+ null
88
+ ]
89
+ },
90
+ "bos_token": "<s>",
91
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
92
+ "clean_up_tokenization_spaces": false,
93
+ "eos_token": "</s>",
94
+ "model_max_length": 1000000000000000019884624838656,
95
+ "pad_token": "</s>",
96
+ "padding_side": "right",
97
+ "tokenizer_class": "InternLM2Tokenizer",
98
+ "unk_token": "<unk>"
99
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae6f37d740b0b1b70979ed63deb68be1062ad38b344dbc70e2c0585a9384e557
3
+ size 5947