File size: 2,800 Bytes
ae8d17d f630293 ae8d17d bd67d49 ae8d17d 5807f94 f630293 5807f94 ae8d17d 5807f94 bd67d49 5807f94 d6a0c30 5807f94 1a2336e 5807f94 ae8d17d 5807f94 ae8d17d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: openrail
datasets:
- LinkSoul/instruction_merge_set
language:
- zh
- en
widget:
- text: "[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n用英文回答,特朗普是谁? [/INST]"
example_title: "特朗普是谁"
---
# Chinese Llama 2 7B
全部开源,完全可商用的**中文版 Llama2 模型及中英文 SFT 数据集**,输入格式严格遵循*llama-2-chat*的输入格式,以方便应用所有针对*llama-2-chat*的优化。
![Chinese LLaMA2 7B](.github/preview.jpg)
## 在线试玩
> Talk is cheap, Show you the Demo.
- [Demo 地址 / HuggingFace Spaces](#)
- [Colab 一键启动](#
)
## 快速测试
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
model_path = "LinkSoul/Chinese-Llama-2-7b"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_path).half().cuda()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
instruction = """[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n{} [/INST]"""
prompt = instruction.format("用英文回答,什么是夫妻肺片?")
generate_ids = model.generate(tokenizer(prompt, return_tensors='pt').input_ids.cuda(), max_new_tokens=4096, streamer=streamer)
```
## 资源下载
- 模型下载:[Chinese Llama2 Chat Model](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b)
> 我们使用了中英文 SFT 数据集,数据量 1000 万。
- 数据集:[https://huggingface.co/datasets/LinkSoul/instruction_merge_set](https://huggingface.co/datasets/LinkSoul/instruction_merge_set)
## 如何训练
```bash
python train.py --args ...
```
## 相关项目
- [Llama2](#)
## 项目协议
[Apache-2.0 license](https://github.com/LinkSoul-AI/Chinese-Llama-2-7b/blob/main/LICENSE) |