Mayfull commited on
Commit
46ffb6d
1 Parent(s): 61b0ce4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1767 -0
README.md CHANGED
@@ -2,6 +2,1773 @@
2
  tags:
3
  - transformers
4
  - mteb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  language:
6
  - en
7
  license: cc-by-nc-4.0
 
2
  tags:
3
  - transformers
4
  - mteb
5
+ model-index:
6
+ - name: Linq-Embed-Mistral
7
+ results:
8
+ - task:
9
+ type: Classification
10
+ dataset:
11
+ type: mteb/amazon_counterfactual
12
+ name: MTEB AmazonCounterfactualClassification (en)
13
+ config: en
14
+ split: test
15
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
16
+ metrics:
17
+ - type: accuracy
18
+ value: 84.43283582089552
19
+ - type: ap
20
+ value: 50.39222584035829
21
+ - type: f1
22
+ value: 78.47906270064071
23
+ - task:
24
+ type: Classification
25
+ dataset:
26
+ type: mteb/amazon_polarity
27
+ name: MTEB AmazonPolarityClassification
28
+ config: default
29
+ split: test
30
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
31
+ metrics:
32
+ - type: accuracy
33
+ value: 95.70445
34
+ - type: ap
35
+ value: 94.28273900595173
36
+ - type: f1
37
+ value: 95.70048412173735
38
+ - task:
39
+ type: Classification
40
+ dataset:
41
+ type: mteb/amazon_reviews_multi
42
+ name: MTEB AmazonReviewsClassification (en)
43
+ config: en
44
+ split: test
45
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
46
+ metrics:
47
+ - type: accuracy
48
+ value: 57.644000000000005
49
+ - type: f1
50
+ value: 56.993648296704876
51
+ - task:
52
+ type: Retrieval
53
+ dataset:
54
+ type: mteb/arguana
55
+ name: MTEB ArguAna
56
+ config: default
57
+ split: test
58
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
59
+ metrics:
60
+ - type: map_at_1
61
+ value: 45.804
62
+ - type: map_at_10
63
+ value: 61.742
64
+ - type: map_at_100
65
+ value: 62.07899999999999
66
+ - type: map_at_1000
67
+ value: 62.08
68
+ - type: map_at_3
69
+ value: 57.717
70
+ - type: map_at_5
71
+ value: 60.27
72
+ - type: mrr_at_1
73
+ value: 47.226
74
+ - type: mrr_at_10
75
+ value: 62.256
76
+ - type: mrr_at_100
77
+ value: 62.601
78
+ - type: mrr_at_1000
79
+ value: 62.601
80
+ - type: mrr_at_3
81
+ value: 58.203
82
+ - type: mrr_at_5
83
+ value: 60.767
84
+ - type: ndcg_at_1
85
+ value: 45.804
86
+ - type: ndcg_at_10
87
+ value: 69.649
88
+ - type: ndcg_at_100
89
+ value: 70.902
90
+ - type: ndcg_at_1000
91
+ value: 70.91199999999999
92
+ - type: ndcg_at_3
93
+ value: 61.497
94
+ - type: ndcg_at_5
95
+ value: 66.097
96
+ - type: precision_at_1
97
+ value: 45.804
98
+ - type: precision_at_10
99
+ value: 9.452
100
+ - type: precision_at_100
101
+ value: 0.996
102
+ - type: precision_at_1000
103
+ value: 0.1
104
+ - type: precision_at_3
105
+ value: 24.135
106
+ - type: precision_at_5
107
+ value: 16.714000000000002
108
+ - type: recall_at_1
109
+ value: 45.804
110
+ - type: recall_at_10
111
+ value: 94.523
112
+ - type: recall_at_100
113
+ value: 99.57300000000001
114
+ - type: recall_at_1000
115
+ value: 99.644
116
+ - type: recall_at_3
117
+ value: 72.404
118
+ - type: recall_at_5
119
+ value: 83.57
120
+ - task:
121
+ type: Clustering
122
+ dataset:
123
+ type: mteb/arxiv-clustering-p2p
124
+ name: MTEB ArxivClusteringP2P
125
+ config: default
126
+ split: test
127
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
128
+ metrics:
129
+ - type: v_measure
130
+ value: 51.47612678878609
131
+ - task:
132
+ type: Clustering
133
+ dataset:
134
+ type: mteb/arxiv-clustering-s2s
135
+ name: MTEB ArxivClusteringS2S
136
+ config: default
137
+ split: test
138
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
139
+ metrics:
140
+ - type: v_measure
141
+ value: 47.2977392340418
142
+ - task:
143
+ type: Reranking
144
+ dataset:
145
+ type: mteb/askubuntudupquestions-reranking
146
+ name: MTEB AskUbuntuDupQuestions
147
+ config: default
148
+ split: test
149
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
150
+ metrics:
151
+ - type: map
152
+ value: 66.82016765243456
153
+ - type: mrr
154
+ value: 79.55227982236292
155
+ - task:
156
+ type: STS
157
+ dataset:
158
+ type: mteb/biosses-sts
159
+ name: MTEB BIOSSES
160
+ config: default
161
+ split: test
162
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
163
+ metrics:
164
+ - type: cos_sim_pearson
165
+ value: 89.15068664186332
166
+ - type: cos_sim_spearman
167
+ value: 86.4013663041054
168
+ - type: euclidean_pearson
169
+ value: 87.36391302921588
170
+ - type: euclidean_spearman
171
+ value: 86.4013663041054
172
+ - type: manhattan_pearson
173
+ value: 87.46116676558589
174
+ - type: manhattan_spearman
175
+ value: 86.78149544753352
176
+ - task:
177
+ type: Classification
178
+ dataset:
179
+ type: mteb/banking77
180
+ name: MTEB Banking77Classification
181
+ config: default
182
+ split: test
183
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
184
+ metrics:
185
+ - type: accuracy
186
+ value: 87.88311688311688
187
+ - type: f1
188
+ value: 87.82368154811464
189
+ - task:
190
+ type: Clustering
191
+ dataset:
192
+ type: mteb/biorxiv-clustering-p2p
193
+ name: MTEB BiorxivClusteringP2P
194
+ config: default
195
+ split: test
196
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
197
+ metrics:
198
+ - type: v_measure
199
+ value: 42.72860396750569
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ type: mteb/biorxiv-clustering-s2s
204
+ name: MTEB BiorxivClusteringS2S
205
+ config: default
206
+ split: test
207
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
208
+ metrics:
209
+ - type: v_measure
210
+ value: 39.58412067938718
211
+ - task:
212
+ type: Retrieval
213
+ dataset:
214
+ type: mteb/cqadupstack
215
+ name: MTEB CQADupstackRetrieval
216
+ config: default
217
+ split: test
218
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
219
+ metrics:
220
+ - type: map_at_1
221
+ value: 30.082666666666665
222
+ - type: map_at_10
223
+ value: 41.13875
224
+ - type: map_at_100
225
+ value: 42.45525
226
+ - type: map_at_1000
227
+ value: 42.561249999999994
228
+ - type: map_at_3
229
+ value: 37.822750000000006
230
+ - type: map_at_5
231
+ value: 39.62658333333333
232
+ - type: mrr_at_1
233
+ value: 35.584
234
+ - type: mrr_at_10
235
+ value: 45.4675
236
+ - type: mrr_at_100
237
+ value: 46.31016666666667
238
+ - type: mrr_at_1000
239
+ value: 46.35191666666666
240
+ - type: mrr_at_3
241
+ value: 42.86674999999999
242
+ - type: mrr_at_5
243
+ value: 44.31341666666666
244
+ - type: ndcg_at_1
245
+ value: 35.584
246
+ - type: ndcg_at_10
247
+ value: 47.26516666666667
248
+ - type: ndcg_at_100
249
+ value: 52.49108333333332
250
+ - type: ndcg_at_1000
251
+ value: 54.24575
252
+ - type: ndcg_at_3
253
+ value: 41.83433333333334
254
+ - type: ndcg_at_5
255
+ value: 44.29899999999999
256
+ - type: precision_at_1
257
+ value: 35.584
258
+ - type: precision_at_10
259
+ value: 8.390333333333334
260
+ - type: precision_at_100
261
+ value: 1.2941666666666667
262
+ - type: precision_at_1000
263
+ value: 0.16308333333333336
264
+ - type: precision_at_3
265
+ value: 19.414583333333333
266
+ - type: precision_at_5
267
+ value: 13.751
268
+ - type: recall_at_1
269
+ value: 30.082666666666665
270
+ - type: recall_at_10
271
+ value: 60.88875
272
+ - type: recall_at_100
273
+ value: 83.35141666666667
274
+ - type: recall_at_1000
275
+ value: 95.0805
276
+ - type: recall_at_3
277
+ value: 45.683749999999996
278
+ - type: recall_at_5
279
+ value: 52.08208333333333
280
+ - task:
281
+ type: Retrieval
282
+ dataset:
283
+ type: mteb/climate-fever
284
+ name: MTEB ClimateFEVER
285
+ config: default
286
+ split: test
287
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
288
+ metrics:
289
+ - type: map_at_1
290
+ value: 16.747
291
+ - type: map_at_10
292
+ value: 29.168
293
+ - type: map_at_100
294
+ value: 31.304
295
+ - type: map_at_1000
296
+ value: 31.496000000000002
297
+ - type: map_at_3
298
+ value: 24.57
299
+ - type: map_at_5
300
+ value: 26.886
301
+ - type: mrr_at_1
302
+ value: 37.524
303
+ - type: mrr_at_10
304
+ value: 50.588
305
+ - type: mrr_at_100
306
+ value: 51.28
307
+ - type: mrr_at_1000
308
+ value: 51.29899999999999
309
+ - type: mrr_at_3
310
+ value: 47.438
311
+ - type: mrr_at_5
312
+ value: 49.434
313
+ - type: ndcg_at_1
314
+ value: 37.524
315
+ - type: ndcg_at_10
316
+ value: 39.11
317
+ - type: ndcg_at_100
318
+ value: 46.373999999999995
319
+ - type: ndcg_at_1000
320
+ value: 49.370999999999995
321
+ - type: ndcg_at_3
322
+ value: 32.964
323
+ - type: ndcg_at_5
324
+ value: 35.028
325
+ - type: precision_at_1
326
+ value: 37.524
327
+ - type: precision_at_10
328
+ value: 12.137
329
+ - type: precision_at_100
330
+ value: 1.9929999999999999
331
+ - type: precision_at_1000
332
+ value: 0.256
333
+ - type: precision_at_3
334
+ value: 24.886
335
+ - type: precision_at_5
336
+ value: 18.762
337
+ - type: recall_at_1
338
+ value: 16.747
339
+ - type: recall_at_10
340
+ value: 45.486
341
+ - type: recall_at_100
342
+ value: 69.705
343
+ - type: recall_at_1000
344
+ value: 86.119
345
+ - type: recall_at_3
346
+ value: 30.070999999999998
347
+ - type: recall_at_5
348
+ value: 36.565
349
+ - task:
350
+ type: Retrieval
351
+ dataset:
352
+ type: mteb/dbpedia
353
+ name: MTEB DBPedia
354
+ config: default
355
+ split: test
356
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
357
+ metrics:
358
+ - type: map_at_1
359
+ value: 10.495000000000001
360
+ - type: map_at_10
361
+ value: 24.005000000000003
362
+ - type: map_at_100
363
+ value: 34.37
364
+ - type: map_at_1000
365
+ value: 36.268
366
+ - type: map_at_3
367
+ value: 16.694
368
+ - type: map_at_5
369
+ value: 19.845
370
+ - type: mrr_at_1
371
+ value: 75.5
372
+ - type: mrr_at_10
373
+ value: 82.458
374
+ - type: mrr_at_100
375
+ value: 82.638
376
+ - type: mrr_at_1000
377
+ value: 82.64
378
+ - type: mrr_at_3
379
+ value: 81.25
380
+ - type: mrr_at_5
381
+ value: 82.125
382
+ - type: ndcg_at_1
383
+ value: 64.625
384
+ - type: ndcg_at_10
385
+ value: 51.322
386
+ - type: ndcg_at_100
387
+ value: 55.413999999999994
388
+ - type: ndcg_at_1000
389
+ value: 62.169
390
+ - type: ndcg_at_3
391
+ value: 56.818999999999996
392
+ - type: ndcg_at_5
393
+ value: 54.32900000000001
394
+ - type: precision_at_1
395
+ value: 75.5
396
+ - type: precision_at_10
397
+ value: 40.849999999999994
398
+ - type: precision_at_100
399
+ value: 12.882
400
+ - type: precision_at_1000
401
+ value: 2.394
402
+ - type: precision_at_3
403
+ value: 59.667
404
+ - type: precision_at_5
405
+ value: 52.2
406
+ - type: recall_at_1
407
+ value: 10.495000000000001
408
+ - type: recall_at_10
409
+ value: 29.226000000000003
410
+ - type: recall_at_100
411
+ value: 59.614
412
+ - type: recall_at_1000
413
+ value: 81.862
414
+ - type: recall_at_3
415
+ value: 17.97
416
+ - type: recall_at_5
417
+ value: 22.438
418
+ - task:
419
+ type: Classification
420
+ dataset:
421
+ type: mteb/emotion
422
+ name: MTEB EmotionClassification
423
+ config: default
424
+ split: test
425
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
426
+ metrics:
427
+ - type: accuracy
428
+ value: 51.82
429
+ - type: f1
430
+ value: 47.794956731921054
431
+ - task:
432
+ type: Retrieval
433
+ dataset:
434
+ type: mteb/fever
435
+ name: MTEB FEVER
436
+ config: default
437
+ split: test
438
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
439
+ metrics:
440
+ - type: map_at_1
441
+ value: 82.52199999999999
442
+ - type: map_at_10
443
+ value: 89.794
444
+ - type: map_at_100
445
+ value: 89.962
446
+ - type: map_at_1000
447
+ value: 89.972
448
+ - type: map_at_3
449
+ value: 88.95100000000001
450
+ - type: map_at_5
451
+ value: 89.524
452
+ - type: mrr_at_1
453
+ value: 88.809
454
+ - type: mrr_at_10
455
+ value: 93.554
456
+ - type: mrr_at_100
457
+ value: 93.577
458
+ - type: mrr_at_1000
459
+ value: 93.577
460
+ - type: mrr_at_3
461
+ value: 93.324
462
+ - type: mrr_at_5
463
+ value: 93.516
464
+ - type: ndcg_at_1
465
+ value: 88.809
466
+ - type: ndcg_at_10
467
+ value: 92.419
468
+ - type: ndcg_at_100
469
+ value: 92.95
470
+ - type: ndcg_at_1000
471
+ value: 93.10000000000001
472
+ - type: ndcg_at_3
473
+ value: 91.45299999999999
474
+ - type: ndcg_at_5
475
+ value: 92.05
476
+ - type: precision_at_1
477
+ value: 88.809
478
+ - type: precision_at_10
479
+ value: 10.911999999999999
480
+ - type: precision_at_100
481
+ value: 1.143
482
+ - type: precision_at_1000
483
+ value: 0.117
484
+ - type: precision_at_3
485
+ value: 34.623
486
+ - type: precision_at_5
487
+ value: 21.343999999999998
488
+ - type: recall_at_1
489
+ value: 82.52199999999999
490
+ - type: recall_at_10
491
+ value: 96.59400000000001
492
+ - type: recall_at_100
493
+ value: 98.55699999999999
494
+ - type: recall_at_1000
495
+ value: 99.413
496
+ - type: recall_at_3
497
+ value: 94.02199999999999
498
+ - type: recall_at_5
499
+ value: 95.582
500
+ - task:
501
+ type: Retrieval
502
+ dataset:
503
+ type: mteb/fiqa
504
+ name: MTEB FiQA2018
505
+ config: default
506
+ split: test
507
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
508
+ metrics:
509
+ - type: map_at_1
510
+ value: 32.842
511
+ - type: map_at_10
512
+ value: 53.147
513
+ - type: map_at_100
514
+ value: 55.265
515
+ - type: map_at_1000
516
+ value: 55.37
517
+ - type: map_at_3
518
+ value: 46.495
519
+ - type: map_at_5
520
+ value: 50.214999999999996
521
+ - type: mrr_at_1
522
+ value: 61.574
523
+ - type: mrr_at_10
524
+ value: 68.426
525
+ - type: mrr_at_100
526
+ value: 68.935
527
+ - type: mrr_at_1000
528
+ value: 68.95400000000001
529
+ - type: mrr_at_3
530
+ value: 66.307
531
+ - type: mrr_at_5
532
+ value: 67.611
533
+ - type: ndcg_at_1
534
+ value: 61.574
535
+ - type: ndcg_at_10
536
+ value: 61.205
537
+ - type: ndcg_at_100
538
+ value: 67.25999999999999
539
+ - type: ndcg_at_1000
540
+ value: 68.657
541
+ - type: ndcg_at_3
542
+ value: 56.717
543
+ - type: ndcg_at_5
544
+ value: 58.196999999999996
545
+ - type: precision_at_1
546
+ value: 61.574
547
+ - type: precision_at_10
548
+ value: 16.852
549
+ - type: precision_at_100
550
+ value: 2.33
551
+ - type: precision_at_1000
552
+ value: 0.256
553
+ - type: precision_at_3
554
+ value: 37.5
555
+ - type: precision_at_5
556
+ value: 27.468999999999998
557
+ - type: recall_at_1
558
+ value: 32.842
559
+ - type: recall_at_10
560
+ value: 68.157
561
+ - type: recall_at_100
562
+ value: 89.5
563
+ - type: recall_at_1000
564
+ value: 97.68599999999999
565
+ - type: recall_at_3
566
+ value: 50.783
567
+ - type: recall_at_5
568
+ value: 58.672000000000004
569
+ - task:
570
+ type: Retrieval
571
+ dataset:
572
+ type: mteb/hotpotqa
573
+ name: MTEB HotpotQA
574
+ config: default
575
+ split: test
576
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
577
+ metrics:
578
+ - type: map_at_1
579
+ value: 39.068000000000005
580
+ - type: map_at_10
581
+ value: 69.253
582
+ - type: map_at_100
583
+ value: 70.036
584
+ - type: map_at_1000
585
+ value: 70.081
586
+ - type: map_at_3
587
+ value: 65.621
588
+ - type: map_at_5
589
+ value: 67.976
590
+ - type: mrr_at_1
591
+ value: 78.13600000000001
592
+ - type: mrr_at_10
593
+ value: 84.328
594
+ - type: mrr_at_100
595
+ value: 84.515
596
+ - type: mrr_at_1000
597
+ value: 84.52300000000001
598
+ - type: mrr_at_3
599
+ value: 83.52199999999999
600
+ - type: mrr_at_5
601
+ value: 84.019
602
+ - type: ndcg_at_1
603
+ value: 78.13600000000001
604
+ - type: ndcg_at_10
605
+ value: 76.236
606
+ - type: ndcg_at_100
607
+ value: 78.891
608
+ - type: ndcg_at_1000
609
+ value: 79.73400000000001
610
+ - type: ndcg_at_3
611
+ value: 71.258
612
+ - type: ndcg_at_5
613
+ value: 74.129
614
+ - type: precision_at_1
615
+ value: 78.13600000000001
616
+ - type: precision_at_10
617
+ value: 16.347
618
+ - type: precision_at_100
619
+ value: 1.839
620
+ - type: precision_at_1000
621
+ value: 0.19499999999999998
622
+ - type: precision_at_3
623
+ value: 47.189
624
+ - type: precision_at_5
625
+ value: 30.581999999999997
626
+ - type: recall_at_1
627
+ value: 39.068000000000005
628
+ - type: recall_at_10
629
+ value: 81.735
630
+ - type: recall_at_100
631
+ value: 91.945
632
+ - type: recall_at_1000
633
+ value: 97.44800000000001
634
+ - type: recall_at_3
635
+ value: 70.783
636
+ - type: recall_at_5
637
+ value: 76.455
638
+ - task:
639
+ type: Classification
640
+ dataset:
641
+ type: mteb/imdb
642
+ name: MTEB ImdbClassification
643
+ config: default
644
+ split: test
645
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
646
+ metrics:
647
+ - type: accuracy
648
+ value: 94.7764
649
+ - type: ap
650
+ value: 92.67841294818406
651
+ - type: f1
652
+ value: 94.77375157383646
653
+ - task:
654
+ type: Retrieval
655
+ dataset:
656
+ type: mteb/msmarco
657
+ name: MTEB MSMARCO
658
+ config: default
659
+ split: dev
660
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
661
+ metrics:
662
+ - type: map_at_1
663
+ value: 24.624
664
+ - type: map_at_10
665
+ value: 37.861
666
+ - type: map_at_100
667
+ value: 39.011
668
+ - type: map_at_1000
669
+ value: 39.052
670
+ - type: map_at_3
671
+ value: 33.76
672
+ - type: map_at_5
673
+ value: 36.153
674
+ - type: mrr_at_1
675
+ value: 25.358000000000004
676
+ - type: mrr_at_10
677
+ value: 38.5
678
+ - type: mrr_at_100
679
+ value: 39.572
680
+ - type: mrr_at_1000
681
+ value: 39.607
682
+ - type: mrr_at_3
683
+ value: 34.491
684
+ - type: mrr_at_5
685
+ value: 36.83
686
+ - type: ndcg_at_1
687
+ value: 25.358000000000004
688
+ - type: ndcg_at_10
689
+ value: 45.214999999999996
690
+ - type: ndcg_at_100
691
+ value: 50.56
692
+ - type: ndcg_at_1000
693
+ value: 51.507999999999996
694
+ - type: ndcg_at_3
695
+ value: 36.925999999999995
696
+ - type: ndcg_at_5
697
+ value: 41.182
698
+ - type: precision_at_1
699
+ value: 25.358000000000004
700
+ - type: precision_at_10
701
+ value: 7.090000000000001
702
+ - type: precision_at_100
703
+ value: 0.9740000000000001
704
+ - type: precision_at_1000
705
+ value: 0.106
706
+ - type: precision_at_3
707
+ value: 15.697
708
+ - type: precision_at_5
709
+ value: 11.599
710
+ - type: recall_at_1
711
+ value: 24.624
712
+ - type: recall_at_10
713
+ value: 67.78699999999999
714
+ - type: recall_at_100
715
+ value: 92.11200000000001
716
+ - type: recall_at_1000
717
+ value: 99.208
718
+ - type: recall_at_3
719
+ value: 45.362
720
+ - type: recall_at_5
721
+ value: 55.58
722
+ - task:
723
+ type: Classification
724
+ dataset:
725
+ type: mteb/mtop_domain
726
+ name: MTEB MTOPDomainClassification (en)
727
+ config: en
728
+ split: test
729
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
730
+ metrics:
731
+ - type: accuracy
732
+ value: 96.83310533515733
733
+ - type: f1
734
+ value: 96.57069781347995
735
+ - task:
736
+ type: Classification
737
+ dataset:
738
+ type: mteb/mtop_intent
739
+ name: MTEB MTOPIntentClassification (en)
740
+ config: en
741
+ split: test
742
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
743
+ metrics:
744
+ - type: accuracy
745
+ value: 89.5690834473324
746
+ - type: f1
747
+ value: 73.7275204564728
748
+ - task:
749
+ type: Classification
750
+ dataset:
751
+ type: mteb/amazon_massive_intent
752
+ name: MTEB MassiveIntentClassification (en)
753
+ config: en
754
+ split: test
755
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
756
+ metrics:
757
+ - type: accuracy
758
+ value: 82.67316745124411
759
+ - type: f1
760
+ value: 79.70626515721662
761
+ - task:
762
+ type: Classification
763
+ dataset:
764
+ type: mteb/amazon_massive_scenario
765
+ name: MTEB MassiveScenarioClassification (en)
766
+ config: en
767
+ split: test
768
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
769
+ metrics:
770
+ - type: accuracy
771
+ value: 85.01344989912575
772
+ - type: f1
773
+ value: 84.45181022816965
774
+ - task:
775
+ type: Clustering
776
+ dataset:
777
+ type: mteb/medrxiv-clustering-p2p
778
+ name: MTEB MedrxivClusteringP2P
779
+ config: default
780
+ split: test
781
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
782
+ metrics:
783
+ - type: v_measure
784
+ value: 37.843426126777295
785
+ - task:
786
+ type: Clustering
787
+ dataset:
788
+ type: mteb/medrxiv-clustering-s2s
789
+ name: MTEB MedrxivClusteringS2S
790
+ config: default
791
+ split: test
792
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
793
+ metrics:
794
+ - type: v_measure
795
+ value: 36.651728547241476
796
+ - task:
797
+ type: Reranking
798
+ dataset:
799
+ type: mteb/mind_small
800
+ name: MTEB MindSmallReranking
801
+ config: default
802
+ split: test
803
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
804
+ metrics:
805
+ - type: map
806
+ value: 32.05750522793288
807
+ - type: mrr
808
+ value: 33.28067556869468
809
+ - task:
810
+ type: Retrieval
811
+ dataset:
812
+ type: mteb/nfcorpus
813
+ name: MTEB NFCorpus
814
+ config: default
815
+ split: test
816
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
817
+ metrics:
818
+ - type: map_at_1
819
+ value: 6.744
820
+ - type: map_at_10
821
+ value: 16.235
822
+ - type: map_at_100
823
+ value: 20.767
824
+ - type: map_at_1000
825
+ value: 22.469
826
+ - type: map_at_3
827
+ value: 11.708
828
+ - type: map_at_5
829
+ value: 13.924
830
+ - type: mrr_at_1
831
+ value: 55.728
832
+ - type: mrr_at_10
833
+ value: 63.869
834
+ - type: mrr_at_100
835
+ value: 64.322
836
+ - type: mrr_at_1000
837
+ value: 64.342
838
+ - type: mrr_at_3
839
+ value: 62.022999999999996
840
+ - type: mrr_at_5
841
+ value: 63.105999999999995
842
+ - type: ndcg_at_1
843
+ value: 53.096
844
+ - type: ndcg_at_10
845
+ value: 41.618
846
+ - type: ndcg_at_100
847
+ value: 38.562999999999995
848
+ - type: ndcg_at_1000
849
+ value: 47.006
850
+ - type: ndcg_at_3
851
+ value: 47.657
852
+ - type: ndcg_at_5
853
+ value: 45.562999999999995
854
+ - type: precision_at_1
855
+ value: 55.108000000000004
856
+ - type: precision_at_10
857
+ value: 30.464000000000002
858
+ - type: precision_at_100
859
+ value: 9.737
860
+ - type: precision_at_1000
861
+ value: 2.2720000000000002
862
+ - type: precision_at_3
863
+ value: 44.376
864
+ - type: precision_at_5
865
+ value: 39.505
866
+ - type: recall_at_1
867
+ value: 6.744
868
+ - type: recall_at_10
869
+ value: 21.11
870
+ - type: recall_at_100
871
+ value: 39.69
872
+ - type: recall_at_1000
873
+ value: 70.44
874
+ - type: recall_at_3
875
+ value: 13.120000000000001
876
+ - type: recall_at_5
877
+ value: 16.669
878
+ - task:
879
+ type: Retrieval
880
+ dataset:
881
+ type: mteb/nq
882
+ name: MTEB NQ
883
+ config: default
884
+ split: test
885
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
886
+ metrics:
887
+ - type: map_at_1
888
+ value: 46.263
889
+ - type: map_at_10
890
+ value: 63.525
891
+ - type: map_at_100
892
+ value: 64.142
893
+ - type: map_at_1000
894
+ value: 64.14800000000001
895
+ - type: map_at_3
896
+ value: 59.653
897
+ - type: map_at_5
898
+ value: 62.244
899
+ - type: mrr_at_1
900
+ value: 51.796
901
+ - type: mrr_at_10
902
+ value: 65.764
903
+ - type: mrr_at_100
904
+ value: 66.155
905
+ - type: mrr_at_1000
906
+ value: 66.158
907
+ - type: mrr_at_3
908
+ value: 63.05500000000001
909
+ - type: mrr_at_5
910
+ value: 64.924
911
+ - type: ndcg_at_1
912
+ value: 51.766999999999996
913
+ - type: ndcg_at_10
914
+ value: 70.626
915
+ - type: ndcg_at_100
916
+ value: 72.905
917
+ - type: ndcg_at_1000
918
+ value: 73.021
919
+ - type: ndcg_at_3
920
+ value: 63.937999999999995
921
+ - type: ndcg_at_5
922
+ value: 68.00699999999999
923
+ - type: precision_at_1
924
+ value: 51.766999999999996
925
+ - type: precision_at_10
926
+ value: 10.768
927
+ - type: precision_at_100
928
+ value: 1.203
929
+ - type: precision_at_1000
930
+ value: 0.121
931
+ - type: precision_at_3
932
+ value: 28.409000000000002
933
+ - type: precision_at_5
934
+ value: 19.502
935
+ - type: recall_at_1
936
+ value: 46.263
937
+ - type: recall_at_10
938
+ value: 89.554
939
+ - type: recall_at_100
940
+ value: 98.914
941
+ - type: recall_at_1000
942
+ value: 99.754
943
+ - type: recall_at_3
944
+ value: 72.89999999999999
945
+ - type: recall_at_5
946
+ value: 82.1
947
+ - task:
948
+ type: Retrieval
949
+ dataset:
950
+ type: mteb/quora
951
+ name: MTEB QuoraRetrieval
952
+ config: default
953
+ split: test
954
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
955
+ metrics:
956
+ - type: map_at_1
957
+ value: 72.748
958
+ - type: map_at_10
959
+ value: 86.87700000000001
960
+ - type: map_at_100
961
+ value: 87.46199999999999
962
+ - type: map_at_1000
963
+ value: 87.47399999999999
964
+ - type: map_at_3
965
+ value: 83.95700000000001
966
+ - type: map_at_5
967
+ value: 85.82300000000001
968
+ - type: mrr_at_1
969
+ value: 83.62
970
+ - type: mrr_at_10
971
+ value: 89.415
972
+ - type: mrr_at_100
973
+ value: 89.484
974
+ - type: mrr_at_1000
975
+ value: 89.484
976
+ - type: mrr_at_3
977
+ value: 88.633
978
+ - type: mrr_at_5
979
+ value: 89.176
980
+ - type: ndcg_at_1
981
+ value: 83.62
982
+ - type: ndcg_at_10
983
+ value: 90.27
984
+ - type: ndcg_at_100
985
+ value: 91.23599999999999
986
+ - type: ndcg_at_1000
987
+ value: 91.293
988
+ - type: ndcg_at_3
989
+ value: 87.69500000000001
990
+ - type: ndcg_at_5
991
+ value: 89.171
992
+ - type: precision_at_1
993
+ value: 83.62
994
+ - type: precision_at_10
995
+ value: 13.683
996
+ - type: precision_at_100
997
+ value: 1.542
998
+ - type: precision_at_1000
999
+ value: 0.157
1000
+ - type: precision_at_3
1001
+ value: 38.363
1002
+ - type: precision_at_5
1003
+ value: 25.196
1004
+ - type: recall_at_1
1005
+ value: 72.748
1006
+ - type: recall_at_10
1007
+ value: 96.61699999999999
1008
+ - type: recall_at_100
1009
+ value: 99.789
1010
+ - type: recall_at_1000
1011
+ value: 99.997
1012
+ - type: recall_at_3
1013
+ value: 89.21
1014
+ - type: recall_at_5
1015
+ value: 93.418
1016
+ - task:
1017
+ type: Clustering
1018
+ dataset:
1019
+ type: mteb/reddit-clustering
1020
+ name: MTEB RedditClustering
1021
+ config: default
1022
+ split: test
1023
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1024
+ metrics:
1025
+ - type: v_measure
1026
+ value: 61.51909029379199
1027
+ - task:
1028
+ type: Clustering
1029
+ dataset:
1030
+ type: mteb/reddit-clustering-p2p
1031
+ name: MTEB RedditClusteringP2P
1032
+ config: default
1033
+ split: test
1034
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1035
+ metrics:
1036
+ - type: v_measure
1037
+ value: 68.24483162045645
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: mteb/scidocs
1042
+ name: MTEB SCIDOCS
1043
+ config: default
1044
+ split: test
1045
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 4.793
1049
+ - type: map_at_10
1050
+ value: 13.092
1051
+ - type: map_at_100
1052
+ value: 15.434000000000001
1053
+ - type: map_at_1000
1054
+ value: 15.748999999999999
1055
+ - type: map_at_3
1056
+ value: 9.139
1057
+ - type: map_at_5
1058
+ value: 11.033
1059
+ - type: mrr_at_1
1060
+ value: 23.599999999999998
1061
+ - type: mrr_at_10
1062
+ value: 35.892
1063
+ - type: mrr_at_100
1064
+ value: 36.962
1065
+ - type: mrr_at_1000
1066
+ value: 37.009
1067
+ - type: mrr_at_3
1068
+ value: 32.550000000000004
1069
+ - type: mrr_at_5
1070
+ value: 34.415
1071
+ - type: ndcg_at_1
1072
+ value: 23.599999999999998
1073
+ - type: ndcg_at_10
1074
+ value: 21.932
1075
+ - type: ndcg_at_100
1076
+ value: 30.433
1077
+ - type: ndcg_at_1000
1078
+ value: 35.668
1079
+ - type: ndcg_at_3
1080
+ value: 20.483999999999998
1081
+ - type: ndcg_at_5
1082
+ value: 17.964
1083
+ - type: precision_at_1
1084
+ value: 23.599999999999998
1085
+ - type: precision_at_10
1086
+ value: 11.63
1087
+ - type: precision_at_100
1088
+ value: 2.383
1089
+ - type: precision_at_1000
1090
+ value: 0.363
1091
+ - type: precision_at_3
1092
+ value: 19.567
1093
+ - type: precision_at_5
1094
+ value: 16.06
1095
+ - type: recall_at_1
1096
+ value: 4.793
1097
+ - type: recall_at_10
1098
+ value: 23.558
1099
+ - type: recall_at_100
1100
+ value: 48.376999999999995
1101
+ - type: recall_at_1000
1102
+ value: 73.75699999999999
1103
+ - type: recall_at_3
1104
+ value: 11.903
1105
+ - type: recall_at_5
1106
+ value: 16.278000000000002
1107
+ - task:
1108
+ type: STS
1109
+ dataset:
1110
+ type: mteb/sickr-sts
1111
+ name: MTEB SICK-R
1112
+ config: default
1113
+ split: test
1114
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
1115
+ metrics:
1116
+ - type: cos_sim_pearson
1117
+ value: 87.31937967632581
1118
+ - type: cos_sim_spearman
1119
+ value: 84.30523596401186
1120
+ - type: euclidean_pearson
1121
+ value: 84.19537987069458
1122
+ - type: euclidean_spearman
1123
+ value: 84.30522052876
1124
+ - type: manhattan_pearson
1125
+ value: 84.16420807244911
1126
+ - type: manhattan_spearman
1127
+ value: 84.28515410219309
1128
+ - task:
1129
+ type: STS
1130
+ dataset:
1131
+ type: mteb/sts12-sts
1132
+ name: MTEB STS12
1133
+ config: default
1134
+ split: test
1135
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1136
+ metrics:
1137
+ - type: cos_sim_pearson
1138
+ value: 86.17180810119646
1139
+ - type: cos_sim_spearman
1140
+ value: 78.44413657529002
1141
+ - type: euclidean_pearson
1142
+ value: 81.69054139101816
1143
+ - type: euclidean_spearman
1144
+ value: 78.44412412142488
1145
+ - type: manhattan_pearson
1146
+ value: 82.04975789626462
1147
+ - type: manhattan_spearman
1148
+ value: 78.78390856857253
1149
+ - task:
1150
+ type: STS
1151
+ dataset:
1152
+ type: mteb/sts13-sts
1153
+ name: MTEB STS13
1154
+ config: default
1155
+ split: test
1156
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1157
+ metrics:
1158
+ - type: cos_sim_pearson
1159
+ value: 88.35737871089687
1160
+ - type: cos_sim_spearman
1161
+ value: 88.26850223126127
1162
+ - type: euclidean_pearson
1163
+ value: 87.44100858335746
1164
+ - type: euclidean_spearman
1165
+ value: 88.26850223126127
1166
+ - type: manhattan_pearson
1167
+ value: 87.61572015772133
1168
+ - type: manhattan_spearman
1169
+ value: 88.56229552813319
1170
+ - task:
1171
+ type: STS
1172
+ dataset:
1173
+ type: mteb/sts14-sts
1174
+ name: MTEB STS14
1175
+ config: default
1176
+ split: test
1177
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1178
+ metrics:
1179
+ - type: cos_sim_pearson
1180
+ value: 86.8395966764906
1181
+ - type: cos_sim_spearman
1182
+ value: 84.49441798385489
1183
+ - type: euclidean_pearson
1184
+ value: 85.3259176121388
1185
+ - type: euclidean_spearman
1186
+ value: 84.49442124804686
1187
+ - type: manhattan_pearson
1188
+ value: 85.35153862806513
1189
+ - type: manhattan_spearman
1190
+ value: 84.60094577432503
1191
+ - task:
1192
+ type: STS
1193
+ dataset:
1194
+ type: mteb/sts15-sts
1195
+ name: MTEB STS15
1196
+ config: default
1197
+ split: test
1198
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1199
+ metrics:
1200
+ - type: cos_sim_pearson
1201
+ value: 90.14048269057345
1202
+ - type: cos_sim_spearman
1203
+ value: 90.27866978947013
1204
+ - type: euclidean_pearson
1205
+ value: 89.35308361940393
1206
+ - type: euclidean_spearman
1207
+ value: 90.27866978947013
1208
+ - type: manhattan_pearson
1209
+ value: 89.37601244066997
1210
+ - type: manhattan_spearman
1211
+ value: 90.42707449698062
1212
+ - task:
1213
+ type: STS
1214
+ dataset:
1215
+ type: mteb/sts16-sts
1216
+ name: MTEB STS16
1217
+ config: default
1218
+ split: test
1219
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1220
+ metrics:
1221
+ - type: cos_sim_pearson
1222
+ value: 86.8522678865688
1223
+ - type: cos_sim_spearman
1224
+ value: 87.37396401580446
1225
+ - type: euclidean_pearson
1226
+ value: 86.37219665505377
1227
+ - type: euclidean_spearman
1228
+ value: 87.37396385867791
1229
+ - type: manhattan_pearson
1230
+ value: 86.44628823799896
1231
+ - type: manhattan_spearman
1232
+ value: 87.49116026788859
1233
+ - task:
1234
+ type: STS
1235
+ dataset:
1236
+ type: mteb/sts17-crosslingual-sts
1237
+ name: MTEB STS17 (en-en)
1238
+ config: en-en
1239
+ split: test
1240
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1241
+ metrics:
1242
+ - type: cos_sim_pearson
1243
+ value: 92.94248481968916
1244
+ - type: cos_sim_spearman
1245
+ value: 92.68185242943188
1246
+ - type: euclidean_pearson
1247
+ value: 92.33802342092979
1248
+ - type: euclidean_spearman
1249
+ value: 92.68185242943188
1250
+ - type: manhattan_pearson
1251
+ value: 92.2011323340474
1252
+ - type: manhattan_spearman
1253
+ value: 92.43364757640346
1254
+ - task:
1255
+ type: STS
1256
+ dataset:
1257
+ type: mteb/sts22-crosslingual-sts
1258
+ name: MTEB STS22 (en)
1259
+ config: en
1260
+ split: test
1261
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
1262
+ metrics:
1263
+ - type: cos_sim_pearson
1264
+ value: 70.2918782293091
1265
+ - type: cos_sim_spearman
1266
+ value: 68.61986257003369
1267
+ - type: euclidean_pearson
1268
+ value: 70.51920905899138
1269
+ - type: euclidean_spearman
1270
+ value: 68.61986257003369
1271
+ - type: manhattan_pearson
1272
+ value: 70.64673843811433
1273
+ - type: manhattan_spearman
1274
+ value: 68.86711466517345
1275
+ - task:
1276
+ type: STS
1277
+ dataset:
1278
+ type: mteb/stsbenchmark-sts
1279
+ name: MTEB STSBenchmark
1280
+ config: default
1281
+ split: test
1282
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
1283
+ metrics:
1284
+ - type: cos_sim_pearson
1285
+ value: 88.62956838105524
1286
+ - type: cos_sim_spearman
1287
+ value: 88.80650007123052
1288
+ - type: euclidean_pearson
1289
+ value: 88.37976252122822
1290
+ - type: euclidean_spearman
1291
+ value: 88.80650007123052
1292
+ - type: manhattan_pearson
1293
+ value: 88.49866938476616
1294
+ - type: manhattan_spearman
1295
+ value: 89.02489665452616
1296
+ - task:
1297
+ type: Reranking
1298
+ dataset:
1299
+ type: mteb/scidocs-reranking
1300
+ name: MTEB SciDocsRR
1301
+ config: default
1302
+ split: test
1303
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
1304
+ metrics:
1305
+ - type: map
1306
+ value: 86.40175229911527
1307
+ - type: mrr
1308
+ value: 96.61958230585682
1309
+ - task:
1310
+ type: Retrieval
1311
+ dataset:
1312
+ type: mteb/scifact
1313
+ name: MTEB SciFact
1314
+ config: default
1315
+ split: test
1316
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
1317
+ metrics:
1318
+ - type: map_at_1
1319
+ value: 63.05
1320
+ - type: map_at_10
1321
+ value: 73.844
1322
+ - type: map_at_100
1323
+ value: 74.313
1324
+ - type: map_at_1000
1325
+ value: 74.321
1326
+ - type: map_at_3
1327
+ value: 71.17999999999999
1328
+ - type: map_at_5
1329
+ value: 72.842
1330
+ - type: mrr_at_1
1331
+ value: 65.667
1332
+ - type: mrr_at_10
1333
+ value: 74.772
1334
+ - type: mrr_at_100
1335
+ value: 75.087
1336
+ - type: mrr_at_1000
1337
+ value: 75.095
1338
+ - type: mrr_at_3
1339
+ value: 72.944
1340
+ - type: mrr_at_5
1341
+ value: 74.078
1342
+ - type: ndcg_at_1
1343
+ value: 65.667
1344
+ - type: ndcg_at_10
1345
+ value: 78.31700000000001
1346
+ - type: ndcg_at_100
1347
+ value: 79.969
1348
+ - type: ndcg_at_1000
1349
+ value: 80.25
1350
+ - type: ndcg_at_3
1351
+ value: 74.099
1352
+ - type: ndcg_at_5
1353
+ value: 76.338
1354
+ - type: precision_at_1
1355
+ value: 65.667
1356
+ - type: precision_at_10
1357
+ value: 10.233
1358
+ - type: precision_at_100
1359
+ value: 1.107
1360
+ - type: precision_at_1000
1361
+ value: 0.11299999999999999
1362
+ - type: precision_at_3
1363
+ value: 28.889
1364
+ - type: precision_at_5
1365
+ value: 19.0
1366
+ - type: recall_at_1
1367
+ value: 63.05
1368
+ - type: recall_at_10
1369
+ value: 90.822
1370
+ - type: recall_at_100
1371
+ value: 97.667
1372
+ - type: recall_at_1000
1373
+ value: 100.0
1374
+ - type: recall_at_3
1375
+ value: 79.489
1376
+ - type: recall_at_5
1377
+ value: 85.161
1378
+ - task:
1379
+ type: PairClassification
1380
+ dataset:
1381
+ type: mteb/sprintduplicatequestions-pairclassification
1382
+ name: MTEB SprintDuplicateQuestions
1383
+ config: default
1384
+ split: test
1385
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
1386
+ metrics:
1387
+ - type: cos_sim_accuracy
1388
+ value: 99.83564356435643
1389
+ - type: cos_sim_ap
1390
+ value: 96.10619363017767
1391
+ - type: cos_sim_f1
1392
+ value: 91.61225514816677
1393
+ - type: cos_sim_precision
1394
+ value: 92.02825428859738
1395
+ - type: cos_sim_recall
1396
+ value: 91.2
1397
+ - type: dot_accuracy
1398
+ value: 99.83564356435643
1399
+ - type: dot_ap
1400
+ value: 96.10619363017767
1401
+ - type: dot_f1
1402
+ value: 91.61225514816677
1403
+ - type: dot_precision
1404
+ value: 92.02825428859738
1405
+ - type: dot_recall
1406
+ value: 91.2
1407
+ - type: euclidean_accuracy
1408
+ value: 99.83564356435643
1409
+ - type: euclidean_ap
1410
+ value: 96.10619363017769
1411
+ - type: euclidean_f1
1412
+ value: 91.61225514816677
1413
+ - type: euclidean_precision
1414
+ value: 92.02825428859738
1415
+ - type: euclidean_recall
1416
+ value: 91.2
1417
+ - type: manhattan_accuracy
1418
+ value: 99.84158415841584
1419
+ - type: manhattan_ap
1420
+ value: 96.27527798658713
1421
+ - type: manhattan_f1
1422
+ value: 92.0
1423
+ - type: manhattan_precision
1424
+ value: 92.0
1425
+ - type: manhattan_recall
1426
+ value: 92.0
1427
+ - type: max_accuracy
1428
+ value: 99.84158415841584
1429
+ - type: max_ap
1430
+ value: 96.27527798658713
1431
+ - type: max_f1
1432
+ value: 92.0
1433
+ - task:
1434
+ type: Clustering
1435
+ dataset:
1436
+ type: mteb/stackexchange-clustering
1437
+ name: MTEB StackExchangeClustering
1438
+ config: default
1439
+ split: test
1440
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
1441
+ metrics:
1442
+ - type: v_measure
1443
+ value: 76.93753872885304
1444
+ - task:
1445
+ type: Clustering
1446
+ dataset:
1447
+ type: mteb/stackexchange-clustering-p2p
1448
+ name: MTEB StackExchangeClusteringP2P
1449
+ config: default
1450
+ split: test
1451
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
1452
+ metrics:
1453
+ - type: v_measure
1454
+ value: 46.044085080870126
1455
+ - task:
1456
+ type: Reranking
1457
+ dataset:
1458
+ type: mteb/stackoverflowdupquestions-reranking
1459
+ name: MTEB StackOverflowDupQuestions
1460
+ config: default
1461
+ split: test
1462
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
1463
+ metrics:
1464
+ - type: map
1465
+ value: 55.885129730227256
1466
+ - type: mrr
1467
+ value: 56.95062494694848
1468
+ - task:
1469
+ type: Summarization
1470
+ dataset:
1471
+ type: mteb/summeval
1472
+ name: MTEB SummEval
1473
+ config: default
1474
+ split: test
1475
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
1476
+ metrics:
1477
+ - type: cos_sim_pearson
1478
+ value: 31.202047940935508
1479
+ - type: cos_sim_spearman
1480
+ value: 30.984832035722228
1481
+ - type: dot_pearson
1482
+ value: 31.20204247226978
1483
+ - type: dot_spearman
1484
+ value: 30.984832035722228
1485
+ - task:
1486
+ type: Retrieval
1487
+ dataset:
1488
+ type: mteb/trec-covid
1489
+ name: MTEB TRECCOVID
1490
+ config: default
1491
+ split: test
1492
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
1493
+ metrics:
1494
+ - type: map_at_1
1495
+ value: 0.245
1496
+ - type: map_at_10
1497
+ value: 2.249
1498
+ - type: map_at_100
1499
+ value: 14.85
1500
+ - type: map_at_1000
1501
+ value: 36.596000000000004
1502
+ - type: map_at_3
1503
+ value: 0.717
1504
+ - type: map_at_5
1505
+ value: 1.18
1506
+ - type: mrr_at_1
1507
+ value: 94.0
1508
+ - type: mrr_at_10
1509
+ value: 96.167
1510
+ - type: mrr_at_100
1511
+ value: 96.167
1512
+ - type: mrr_at_1000
1513
+ value: 96.167
1514
+ - type: mrr_at_3
1515
+ value: 95.667
1516
+ - type: mrr_at_5
1517
+ value: 96.167
1518
+ - type: ndcg_at_1
1519
+ value: 91.0
1520
+ - type: ndcg_at_10
1521
+ value: 87.09700000000001
1522
+ - type: ndcg_at_100
1523
+ value: 69.637
1524
+ - type: ndcg_at_1000
1525
+ value: 62.257
1526
+ - type: ndcg_at_3
1527
+ value: 90.235
1528
+ - type: ndcg_at_5
1529
+ value: 89.51400000000001
1530
+ - type: precision_at_1
1531
+ value: 94.0
1532
+ - type: precision_at_10
1533
+ value: 90.60000000000001
1534
+ - type: precision_at_100
1535
+ value: 71.38
1536
+ - type: precision_at_1000
1537
+ value: 27.400000000000002
1538
+ - type: precision_at_3
1539
+ value: 94.0
1540
+ - type: precision_at_5
1541
+ value: 93.2
1542
+ - type: recall_at_1
1543
+ value: 0.245
1544
+ - type: recall_at_10
1545
+ value: 2.366
1546
+ - type: recall_at_100
1547
+ value: 17.491
1548
+ - type: recall_at_1000
1549
+ value: 58.772999999999996
1550
+ - type: recall_at_3
1551
+ value: 0.7270000000000001
1552
+ - type: recall_at_5
1553
+ value: 1.221
1554
+ - task:
1555
+ type: Retrieval
1556
+ dataset:
1557
+ type: mteb/touche2020
1558
+ name: MTEB Touche2020
1559
+ config: default
1560
+ split: test
1561
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
1562
+ metrics:
1563
+ - type: map_at_1
1564
+ value: 3.435
1565
+ - type: map_at_10
1566
+ value: 12.147
1567
+ - type: map_at_100
1568
+ value: 18.724
1569
+ - type: map_at_1000
1570
+ value: 20.426
1571
+ - type: map_at_3
1572
+ value: 6.526999999999999
1573
+ - type: map_at_5
1574
+ value: 9.198
1575
+ - type: mrr_at_1
1576
+ value: 48.980000000000004
1577
+ - type: mrr_at_10
1578
+ value: 62.970000000000006
1579
+ - type: mrr_at_100
1580
+ value: 63.288999999999994
1581
+ - type: mrr_at_1000
1582
+ value: 63.288999999999994
1583
+ - type: mrr_at_3
1584
+ value: 59.184000000000005
1585
+ - type: mrr_at_5
1586
+ value: 61.224000000000004
1587
+ - type: ndcg_at_1
1588
+ value: 46.939
1589
+ - type: ndcg_at_10
1590
+ value: 30.61
1591
+ - type: ndcg_at_100
1592
+ value: 41.683
1593
+ - type: ndcg_at_1000
1594
+ value: 53.144000000000005
1595
+ - type: ndcg_at_3
1596
+ value: 36.284
1597
+ - type: ndcg_at_5
1598
+ value: 34.345
1599
+ - type: precision_at_1
1600
+ value: 48.980000000000004
1601
+ - type: precision_at_10
1602
+ value: 26.122
1603
+ - type: precision_at_100
1604
+ value: 8.204
1605
+ - type: precision_at_1000
1606
+ value: 1.6019999999999999
1607
+ - type: precision_at_3
1608
+ value: 35.374
1609
+ - type: precision_at_5
1610
+ value: 32.653
1611
+ - type: recall_at_1
1612
+ value: 3.435
1613
+ - type: recall_at_10
1614
+ value: 18.953
1615
+ - type: recall_at_100
1616
+ value: 50.775000000000006
1617
+ - type: recall_at_1000
1618
+ value: 85.858
1619
+ - type: recall_at_3
1620
+ value: 7.813000000000001
1621
+ - type: recall_at_5
1622
+ value: 11.952
1623
+ - task:
1624
+ type: Classification
1625
+ dataset:
1626
+ type: mteb/toxic_conversations_50k
1627
+ name: MTEB ToxicConversationsClassification
1628
+ config: default
1629
+ split: test
1630
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
1631
+ metrics:
1632
+ - type: accuracy
1633
+ value: 71.2938
1634
+ - type: ap
1635
+ value: 15.090139095602268
1636
+ - type: f1
1637
+ value: 55.23862650598296
1638
+ - task:
1639
+ type: Classification
1640
+ dataset:
1641
+ type: mteb/tweet_sentiment_extraction
1642
+ name: MTEB TweetSentimentExtractionClassification
1643
+ config: default
1644
+ split: test
1645
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
1646
+ metrics:
1647
+ - type: accuracy
1648
+ value: 64.7623089983022
1649
+ - type: f1
1650
+ value: 65.07617131099336
1651
+ - task:
1652
+ type: Clustering
1653
+ dataset:
1654
+ type: mteb/twentynewsgroups-clustering
1655
+ name: MTEB TwentyNewsgroupsClustering
1656
+ config: default
1657
+ split: test
1658
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
1659
+ metrics:
1660
+ - type: v_measure
1661
+ value: 57.2988222684939
1662
+ - task:
1663
+ type: PairClassification
1664
+ dataset:
1665
+ type: mteb/twittersemeval2015-pairclassification
1666
+ name: MTEB TwitterSemEval2015
1667
+ config: default
1668
+ split: test
1669
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
1670
+ metrics:
1671
+ - type: cos_sim_accuracy
1672
+ value: 88.6034451928235
1673
+ - type: cos_sim_ap
1674
+ value: 81.51815279166863
1675
+ - type: cos_sim_f1
1676
+ value: 74.43794671864849
1677
+ - type: cos_sim_precision
1678
+ value: 73.34186939820742
1679
+ - type: cos_sim_recall
1680
+ value: 75.56728232189973
1681
+ - type: dot_accuracy
1682
+ value: 88.6034451928235
1683
+ - type: dot_ap
1684
+ value: 81.51816956866841
1685
+ - type: dot_f1
1686
+ value: 74.43794671864849
1687
+ - type: dot_precision
1688
+ value: 73.34186939820742
1689
+ - type: dot_recall
1690
+ value: 75.56728232189973
1691
+ - type: euclidean_accuracy
1692
+ value: 88.6034451928235
1693
+ - type: euclidean_ap
1694
+ value: 81.51817015121485
1695
+ - type: euclidean_f1
1696
+ value: 74.43794671864849
1697
+ - type: euclidean_precision
1698
+ value: 73.34186939820742
1699
+ - type: euclidean_recall
1700
+ value: 75.56728232189973
1701
+ - type: manhattan_accuracy
1702
+ value: 88.5736424867378
1703
+ - type: manhattan_ap
1704
+ value: 81.37610101292196
1705
+ - type: manhattan_f1
1706
+ value: 74.2504182215931
1707
+ - type: manhattan_precision
1708
+ value: 72.46922883697563
1709
+ - type: manhattan_recall
1710
+ value: 76.12137203166228
1711
+ - type: max_accuracy
1712
+ value: 88.6034451928235
1713
+ - type: max_ap
1714
+ value: 81.51817015121485
1715
+ - type: max_f1
1716
+ value: 74.43794671864849
1717
+ - task:
1718
+ type: PairClassification
1719
+ dataset:
1720
+ type: mteb/twitterurlcorpus-pairclassification
1721
+ name: MTEB TwitterURLCorpus
1722
+ config: default
1723
+ split: test
1724
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
1725
+ metrics:
1726
+ - type: cos_sim_accuracy
1727
+ value: 89.53118329646446
1728
+ - type: cos_sim_ap
1729
+ value: 87.41972033060013
1730
+ - type: cos_sim_f1
1731
+ value: 79.4392523364486
1732
+ - type: cos_sim_precision
1733
+ value: 75.53457372951958
1734
+ - type: cos_sim_recall
1735
+ value: 83.7696335078534
1736
+ - type: dot_accuracy
1737
+ value: 89.53118329646446
1738
+ - type: dot_ap
1739
+ value: 87.41971646088945
1740
+ - type: dot_f1
1741
+ value: 79.4392523364486
1742
+ - type: dot_precision
1743
+ value: 75.53457372951958
1744
+ - type: dot_recall
1745
+ value: 83.7696335078534
1746
+ - type: euclidean_accuracy
1747
+ value: 89.53118329646446
1748
+ - type: euclidean_ap
1749
+ value: 87.41972415605997
1750
+ - type: euclidean_f1
1751
+ value: 79.4392523364486
1752
+ - type: euclidean_precision
1753
+ value: 75.53457372951958
1754
+ - type: euclidean_recall
1755
+ value: 83.7696335078534
1756
+ - type: manhattan_accuracy
1757
+ value: 89.5855163581325
1758
+ - type: manhattan_ap
1759
+ value: 87.51158697451964
1760
+ - type: manhattan_f1
1761
+ value: 79.54455087655883
1762
+ - type: manhattan_precision
1763
+ value: 74.96763643796416
1764
+ - type: manhattan_recall
1765
+ value: 84.71666153372344
1766
+ - type: max_accuracy
1767
+ value: 89.5855163581325
1768
+ - type: max_ap
1769
+ value: 87.51158697451964
1770
+ - type: max_f1
1771
+ value: 79.54455087655883
1772
  language:
1773
  - en
1774
  license: cc-by-nc-4.0