andrijdavid commited on
Commit
6f20f9f
1 Parent(s): 8dcde3f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +282 -0
README.md ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - fr
4
+ - it
5
+ - de
6
+ - es
7
+ - en
8
+ license: apache-2.0
9
+ tags:
10
+ - moe
11
+ - GGUF
12
+ model-index:
13
+ - name: Mixtral-8x22B-v0.1
14
+ results:
15
+ - task:
16
+ type: text-generation
17
+ name: Text Generation
18
+ dataset:
19
+ name: AI2 Reasoning Challenge (25-Shot)
20
+ type: ai2_arc
21
+ config: ARC-Challenge
22
+ split: test
23
+ args:
24
+ num_few_shot: 25
25
+ metrics:
26
+ - type: acc_norm
27
+ value: 70.48
28
+ name: normalized accuracy
29
+ source:
30
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
31
+ name: Open LLM Leaderboard
32
+ - task:
33
+ type: text-generation
34
+ name: Text Generation
35
+ dataset:
36
+ name: HellaSwag (10-Shot)
37
+ type: hellaswag
38
+ split: validation
39
+ args:
40
+ num_few_shot: 10
41
+ metrics:
42
+ - type: acc_norm
43
+ value: 88.73
44
+ name: normalized accuracy
45
+ source:
46
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
47
+ name: Open LLM Leaderboard
48
+ - task:
49
+ type: text-generation
50
+ name: Text Generation
51
+ dataset:
52
+ name: MMLU (5-Shot)
53
+ type: cais/mmlu
54
+ config: all
55
+ split: test
56
+ args:
57
+ num_few_shot: 5
58
+ metrics:
59
+ - type: acc
60
+ value: 77.81
61
+ name: accuracy
62
+ source:
63
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
64
+ name: Open LLM Leaderboard
65
+ - task:
66
+ type: text-generation
67
+ name: Text Generation
68
+ dataset:
69
+ name: TruthfulQA (0-shot)
70
+ type: truthful_qa
71
+ config: multiple_choice
72
+ split: validation
73
+ args:
74
+ num_few_shot: 0
75
+ metrics:
76
+ - type: mc2
77
+ value: 51.08
78
+ source:
79
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
80
+ name: Open LLM Leaderboard
81
+ - task:
82
+ type: text-generation
83
+ name: Text Generation
84
+ dataset:
85
+ name: Winogrande (5-shot)
86
+ type: winogrande
87
+ config: winogrande_xl
88
+ split: validation
89
+ args:
90
+ num_few_shot: 5
91
+ metrics:
92
+ - type: acc
93
+ value: 84.53
94
+ name: accuracy
95
+ source:
96
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
97
+ name: Open LLM Leaderboard
98
+ - task:
99
+ type: text-generation
100
+ name: Text Generation
101
+ dataset:
102
+ name: GSM8k (5-shot)
103
+ type: gsm8k
104
+ config: main
105
+ split: test
106
+ args:
107
+ num_few_shot: 5
108
+ metrics:
109
+ - type: acc
110
+ value: 74.15
111
+ name: accuracy
112
+ source:
113
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
114
+ name: Open LLM Leaderboard
115
+ quantized_by: andrijdavid
116
+ ---
117
+ # Mixtral-8x22B-v0.1-GGUF
118
+ - Original model: [Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1)
119
+
120
+ <!-- description start -->
121
+ ## Description
122
+
123
+ This repo contains GGUF format model files for [Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1).
124
+
125
+ <!-- description end -->
126
+ <!-- README_GGUF.md-about-gguf start -->
127
+ ### About GGUF
128
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
129
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
130
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option.
131
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration.
132
+ * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​
133
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling.
134
+ * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration.
135
+ * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration.
136
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection.
137
+ * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration.
138
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server.
139
+ * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use.
140
+ * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server.
141
+ * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
142
+ <!-- README_GGUF.md-about-gguf end -->
143
+
144
+ ## How to download GGUF files
145
+
146
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
147
+
148
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
149
+
150
+ * LM Studio
151
+ * LoLLMS Web UI
152
+ * Faraday.dev
153
+
154
+ ### In `text-generation-webui`
155
+
156
+ Under Download Model, you can enter the model repo: andrijdavid/Mixtral-8x22B-v0.1-GGUF and below it, a specific filename to download, such as: Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf.
157
+
158
+ Then click Download.
159
+
160
+ ### On the command line, including multiple files at once
161
+
162
+ I recommend using the `huggingface-hub` Python library:
163
+
164
+ ```shell
165
+ pip3 install huggingface-hub
166
+ ```
167
+
168
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
169
+
170
+ ```shell
171
+ huggingface-cli download andrijdavid/Mixtral-8x22B-v0.1-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
172
+ ```
173
+
174
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
175
+
176
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
177
+
178
+ ```shell
179
+ pip3 install hf_transfer
180
+ ```
181
+
182
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
183
+
184
+ ```shell
185
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download andrijdavid/Mixtral-8x22B-v0.1-GGUF Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
186
+ ```
187
+
188
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
189
+
190
+ <!-- README_GGUF.md-how-to-download end -->
191
+ <!-- README_GGUF.md-how-to-run start -->
192
+ ## Example `llama.cpp` command
193
+
194
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
195
+
196
+ ```shell
197
+ ./main -ngl 35 -m Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf --color --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
198
+ ```
199
+
200
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
201
+
202
+ Change `-c {{context_size}}` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
203
+
204
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
205
+
206
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
207
+
208
+ ## How to run in `text-generation-webui`
209
+
210
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
211
+
212
+ ## How to run from Python code
213
+
214
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
215
+
216
+ ### How to load this model in Python code, using llama-cpp-python
217
+
218
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
219
+
220
+ #### First install the package
221
+
222
+ Run one of the following commands, according to your system:
223
+
224
+ ```shell
225
+ # Base ctransformers with no GPU acceleration
226
+ pip install llama-cpp-python
227
+ # With NVidia CUDA acceleration
228
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
229
+ # Or with OpenBLAS acceleration
230
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
231
+ # Or with CLBLast acceleration
232
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
233
+ # Or with AMD ROCm GPU acceleration (Linux only)
234
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
235
+ # Or with Metal GPU acceleration for macOS systems only
236
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
237
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
238
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
239
+ pip install llama-cpp-python
240
+ ```
241
+
242
+ #### Simple llama-cpp-python example code
243
+
244
+ ```python
245
+ from llama_cpp import Llama
246
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
247
+ llm = Llama(
248
+ model_path="./Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf", # Download the model file first
249
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
250
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
251
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
252
+ )
253
+ # Simple inference example
254
+ output = llm(
255
+ "<PROMPT>", # Prompt
256
+ max_tokens=512, # Generate up to 512 tokens
257
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
258
+ echo=True # Whether to echo the prompt
259
+ )
260
+ # Chat Completion API
261
+ llm = Llama(model_path="./Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
262
+ llm.create_chat_completion(
263
+ messages = [
264
+ {"role": "system", "content": "You are a story writing assistant."},
265
+ {
266
+ "role": "user",
267
+ "content": "Write a story about llamas."
268
+ }
269
+ ]
270
+ )
271
+ ```
272
+
273
+ ## How to use with LangChain
274
+
275
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
276
+
277
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
278
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
279
+
280
+ <!-- README_GGUF.md-how-to-run end -->
281
+
282
+ <!-- footer end -->