andrijdavid commited on
Commit
dd2fd58
1 Parent(s): 92868ce

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +154 -10
README.md CHANGED
@@ -26,6 +26,7 @@ model-index:
26
  - type: acc_norm
27
  value: 70.48
28
  name: normalized accuracy
 
29
  source:
30
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
31
  name: Open LLM Leaderboard
@@ -42,6 +43,7 @@ model-index:
42
  - type: acc_norm
43
  value: 88.73
44
  name: normalized accuracy
 
45
  source:
46
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
47
  name: Open LLM Leaderboard
@@ -59,6 +61,7 @@ model-index:
59
  - type: acc
60
  value: 77.81
61
  name: accuracy
 
62
  source:
63
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
64
  name: Open LLM Leaderboard
@@ -75,6 +78,7 @@ model-index:
75
  metrics:
76
  - type: mc2
77
  value: 51.08
 
78
  source:
79
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
80
  name: Open LLM Leaderboard
@@ -92,6 +96,7 @@ model-index:
92
  - type: acc
93
  value: 84.53
94
  name: accuracy
 
95
  source:
96
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
97
  name: Open LLM Leaderboard
@@ -109,6 +114,7 @@ model-index:
109
  - type: acc
110
  value: 74.15
111
  name: accuracy
 
112
  source:
113
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
114
  name: Open LLM Leaderboard
@@ -141,6 +147,21 @@ Here is an incomplete list of clients and libraries that are known to support GG
141
  * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
142
  <!-- README_GGUF.md-about-gguf end -->
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  ## How to download GGUF files
145
 
146
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
@@ -153,7 +174,7 @@ The following clients/libraries will automatically download models for you, prov
153
 
154
  ### In `text-generation-webui`
155
 
156
- Under Download Model, you can enter the model repo: andrijdavid/Mixtral-8x22B-v0.1-GGUF and below it, a specific filename to download, such as: Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf.
157
 
158
  Then click Download.
159
 
@@ -168,7 +189,16 @@ pip3 install huggingface-hub
168
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
169
 
170
  ```shell
171
- huggingface-cli download andrijdavid/Mixtral-8x22B-v0.1-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
 
 
 
 
 
 
 
 
 
172
  ```
173
 
174
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
@@ -176,17 +206,17 @@ For more documentation on downloading with `huggingface-cli`, please see: [HF ->
176
  To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
177
 
178
  ```shell
179
- pip3 install hf_transfer
180
  ```
181
 
182
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
183
 
184
  ```shell
185
- HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download andrijdavid/Mixtral-8x22B-v0.1-GGUF Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
186
  ```
187
 
188
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
189
-
190
  <!-- README_GGUF.md-how-to-download end -->
191
  <!-- README_GGUF.md-how-to-run start -->
192
  ## Example `llama.cpp` command
@@ -194,12 +224,12 @@ Windows Command Line users: You can set the environment variable by running `set
194
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
195
 
196
  ```shell
197
- ./main -ngl 35 -m Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf --color --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
198
  ```
199
 
200
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
201
 
202
- Change `-c {{context_size}}` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
203
 
204
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
205
 
@@ -245,7 +275,7 @@ pip install llama-cpp-python
245
  from llama_cpp import Llama
246
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
247
  llm = Llama(
248
- model_path="./Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf", # Download the model file first
249
  n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
250
  n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
251
  n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
@@ -258,7 +288,7 @@ output = llm(
258
  echo=True # Whether to echo the prompt
259
  )
260
  # Chat Completion API
261
- llm = Llama(model_path="./Q2_K/Mixtral-8x22B-v0.1-Q2_K-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
262
  llm.create_chat_completion(
263
  messages = [
264
  {"role": "system", "content": "You are a story writing assistant."},
@@ -279,4 +309,118 @@ Here are guides on using llama-cpp-python and ctransformers with LangChain:
279
 
280
  <!-- README_GGUF.md-how-to-run end -->
281
 
282
- <!-- footer end -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  - type: acc_norm
27
  value: 70.48
28
  name: normalized accuracy
29
+ verified: false
30
  source:
31
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
32
  name: Open LLM Leaderboard
 
43
  - type: acc_norm
44
  value: 88.73
45
  name: normalized accuracy
46
+ verified: false
47
  source:
48
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
49
  name: Open LLM Leaderboard
 
61
  - type: acc
62
  value: 77.81
63
  name: accuracy
64
+ verified: false
65
  source:
66
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
67
  name: Open LLM Leaderboard
 
78
  metrics:
79
  - type: mc2
80
  value: 51.08
81
+ verified: false
82
  source:
83
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
84
  name: Open LLM Leaderboard
 
96
  - type: acc
97
  value: 84.53
98
  name: accuracy
99
+ verified: false
100
  source:
101
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
102
  name: Open LLM Leaderboard
 
114
  - type: acc
115
  value: 74.15
116
  name: accuracy
117
+ verified: false
118
  source:
119
  url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mistral-community/Mixtral-8x22B-v0.1
120
  name: Open LLM Leaderboard
 
147
  * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
148
  <!-- README_GGUF.md-about-gguf end -->
149
 
150
+ <!-- compatibility_gguf start -->
151
+ ## Explanation of quantisation methods
152
+ <details>
153
+ <summary>Click to see details</summary>
154
+ The new methods available are:
155
+
156
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
157
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
158
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
159
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
160
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw.
161
+ </details>
162
+ <!-- compatibility_gguf end -->
163
+
164
+ <!-- README_GGUF.md-how-to-download start -->
165
  ## How to download GGUF files
166
 
167
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
 
174
 
175
  ### In `text-generation-webui`
176
 
177
+ Under Download Model, you can enter the model repo: LiteLLMs/Mixtral-8x22B-v0.1-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf.
178
 
179
  Then click Download.
180
 
 
189
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
190
 
191
  ```shell
192
+ huggingface-cli download LiteLLMs/Mixtral-8x22B-v0.1-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
193
+ ```
194
+
195
+ <details>
196
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
197
+
198
+ You can also download multiple files at once with a pattern:
199
+
200
+ ```shell
201
+ huggingface-cli download LiteLLMs/Mixtral-8x22B-v0.1-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
202
  ```
203
 
204
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
 
206
  To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
207
 
208
  ```shell
209
+ pip3 install huggingface_hub[hf_transfer]
210
  ```
211
 
212
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
213
 
214
  ```shell
215
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Mixtral-8x22B-v0.1-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
216
  ```
217
 
218
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
219
+ </details>
220
  <!-- README_GGUF.md-how-to-download end -->
221
  <!-- README_GGUF.md-how-to-run start -->
222
  ## Example `llama.cpp` command
 
224
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
225
 
226
  ```shell
227
+ ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 65536 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
228
  ```
229
 
230
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
231
 
232
+ Change `-c 65536` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
233
 
234
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
235
 
 
275
  from llama_cpp import Llama
276
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
277
  llm = Llama(
278
+ model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first
279
  n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
280
  n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
281
  n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
 
288
  echo=True # Whether to echo the prompt
289
  )
290
  # Chat Completion API
291
+ llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
292
  llm.create_chat_completion(
293
  messages = [
294
  {"role": "system", "content": "You are a story writing assistant."},
 
309
 
310
  <!-- README_GGUF.md-how-to-run end -->
311
 
312
+ <!-- footer end -->
313
+
314
+ <!-- original-model-card start -->
315
+ # Original model card: Mixtral-8x22B-v0.1
316
+
317
+ # Mixtral-8x22B
318
+
319
+ > [!TIP]
320
+ > MistralAI has uploaded weights to their organization at [mistralai/Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1) and [mistralai/Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1) too.
321
+
322
+ > [!TIP]
323
+ > Kudos to [@v2ray](https://huggingface.co/v2ray) for converting the checkpoints and uploading them in `transformers` compatible format. Go give them a follow!
324
+
325
+ Converted to HuggingFace Transformers format using the script [here](https://huggingface.co/v2ray/Mixtral-8x22B-v0.1/blob/main/convert.py).
326
+
327
+ The Mixtral-8x22B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts.
328
+ ## Run the model
329
+ ```python
330
+ from transformers import AutoModelForCausalLM, AutoTokenizer
331
+
332
+ model_id = "mistral-community/Mixtral-8x22B-v0.1"
333
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
334
+
335
+ model = AutoModelForCausalLM.from_pretrained(model_id)
336
+
337
+ text = "Hello my name is"
338
+ inputs = tokenizer(text, return_tensors="pt")
339
+
340
+ outputs = model.generate(**inputs, max_new_tokens=20)
341
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
342
+ ```
343
+ By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
344
+ ### In half-precision
345
+ Note `float16` precision only works on GPU devices
346
+ <details>
347
+ <summary> Click to expand </summary>
348
+
349
+ ```diff
350
+ + import torch
351
+ from transformers import AutoModelForCausalLM, AutoTokenizer
352
+
353
+ model_id = "mistral-community/Mixtral-8x22B-v0.1"
354
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
355
+
356
+ + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)
357
+
358
+ text = "Hello my name is"
359
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
360
+
361
+ outputs = model.generate(**inputs, max_new_tokens=20)
362
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
363
+ ```
364
+ </details>
365
+
366
+ ### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
367
+ <details>
368
+ <summary> Click to expand </summary>
369
+
370
+ ```diff
371
+ + import torch
372
+ from transformers import AutoModelForCausalLM, AutoTokenizer
373
+
374
+ model_id = "mistral-community/Mixtral-8x22B-v0.1"
375
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
376
+
377
+ + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
378
+
379
+ text = "Hello my name is"
380
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
381
+
382
+ outputs = model.generate(**inputs, max_new_tokens=20)
383
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
384
+ ```
385
+ </details>
386
+
387
+ ### Load the model with Flash Attention 2
388
+ <details>
389
+ <summary> Click to expand </summary>
390
+
391
+ ```diff
392
+ + import torch
393
+ from transformers import AutoModelForCausalLM, AutoTokenizer
394
+
395
+ model_id = "mistral-community/Mixtral-8x22B-v0.1"
396
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
397
+
398
+ + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)
399
+
400
+ text = "Hello my name is"
401
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
402
+
403
+ outputs = model.generate(**inputs, max_new_tokens=20)
404
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
405
+ ```
406
+ </details>
407
+
408
+ ## Notice
409
+ Mixtral-8x22B-v0.1 is a pretrained base model and therefore does not have any moderation mechanisms.
410
+ # The Mistral AI Team
411
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall.
412
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
413
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mistral-community__Mixtral-8x22B-v0.1)
414
+
415
+ | Metric | Value |
416
+ | -: |
417
+ | Avg. | 74.46 |
418
+ | AI2 Reasoning Challenge (25-Shot) | 70.48 |
419
+ | HellaSwag (10-Shot) | 88.73 |
420
+ | MMLU (5-Shot) | 77.81 |
421
+ | TruthfulQA (0-shot) | 51.08 |
422
+ | Winogrande (5-shot) | 84.53 |
423
+ | GSM8k (5-shot) | 74.15 |
424
+
425
+
426
+ <!-- original-model-card end -->