--- license: mit datasets: - huggan/anime-faces pipeline_tag: unconditional-image-generation tags: - art --- # Abstract **DDPM** model trained on [huggan/anime-faces](https://huggingface.co/datasets/huggan/anime-faces) dataset. ## Training Arguments | Argument | Value | | :-------------------------: | :----: | | image_size | 64 | | train_batch_size | 16 | | eval_batch_size | 16 | | num_epochs | 50 | | gradient_accumulation_steps | 1 | | learning_rate | 1e-4 | | lr_warmup_steps | 500 | | mixed_precision | "fp16" | For training code, please refer to [this link](https://github.com/LittleNyima/code-snippets/blob/master/ddpm-tutorial/ddpm_training.py). # Inference This project aims to implement DDPM from scratch, so `DDPMScheduler` is not used. Instead, I use only `UNet2DModel` and implement a simple scheduler myself. The inference code is: ```python import torch from tqdm import tqdm from diffusers import UNet2DModel class DDPM: def __init__( self, num_train_timesteps:int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, ): self.num_train_timesteps = num_train_timesteps self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.timesteps = torch.arange(num_train_timesteps - 1, -1, -1) def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ): alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype) noise = noise.to(original_samples.device) timesteps = timesteps.to(original_samples.device) # \sqrt{\bar\alpha_t} sqrt_alpha_prod = alphas_cumprod[timesteps].flatten() ** 0.5 while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) # \sqrt{1 - \bar\alpha_t} sqrt_one_minus_alpha_prod = (1.0 - alphas_cumprod[timesteps]).flatten() ** 0.5 while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) return sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise @torch.no_grad() def sample( self, unet: UNet2DModel, batch_size: int, in_channels: int, sample_size: int, ): betas = self.betas.to(unet.device) alphas = self.alphas.to(unet.device) alphas_cumprod = self.alphas_cumprod.to(unet.device) timesteps = self.timesteps.to(unet.device) images = torch.randn((batch_size, in_channels, sample_size, sample_size), device=unet.device) for timestep in tqdm(timesteps, desc='Sampling'): pred_noise: torch.Tensor = unet(images, timestep).sample # mean of q(x_{t-1}|x_t) alpha_t = alphas[timestep] alpha_cumprod_t = alphas_cumprod[timestep] sqrt_alpha_t = alpha_t ** 0.5 one_minus_alpha_t = 1.0 - alpha_t sqrt_one_minus_alpha_cumprod_t = (1 - alpha_cumprod_t) ** 0.5 mean = (images - one_minus_alpha_t / sqrt_one_minus_alpha_cumprod_t * pred_noise) / sqrt_alpha_t # variance of q(x_{t-1}|x_t) if timestep > 1: beta_t = betas[timestep] one_minus_alpha_cumprod_t_minus_one = 1.0 - alphas_cumprod[timestep - 1] one_divided_by_sigma_square = alpha_t / beta_t + 1.0 / one_minus_alpha_cumprod_t_minus_one variance = (1.0 / one_divided_by_sigma_square) ** 0.5 else: variance = torch.zeros_like(timestep) epsilon = torch.randn_like(images) images = mean + variance * epsilon images = (images / 2.0 + 0.5).clamp(0, 1).cpu().permute(0, 2, 3, 1).numpy() return images model = UNet2DModel.from_pretrained('ddpm-animefaces-64').cuda() ddpm = DDPM() images = ddpm.sample(model, 32, 3, 64) from diffusers.utils import make_image_grid, numpy_to_pil image_grid = make_image_grid(numpy_to_pil(images), rows=4, cols=8) image_grid.save('ddpm-sample-results.png') ``` This can also be found in [this link](https://github.com/LittleNyima/code-snippets/blob/master/ddpm-tutorial/ddpm_sampling.py).