--- license: apache-2.0 language: - en - az base_model: - sentence-transformers/LaBSE pipeline_tag: sentence-similarity --- # Small LaBSE for English-Azerbaijani This is an optimized version of [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) # Benchmark | STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model | |--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|--------------------------------------| | 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE | | 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | LocalDoc/LaBSE-small-AZ | | 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm | | 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct | | 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large | | 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base | | 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small | | 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 | [STS-Benchmark](https://github.com/LocalDoc-Azerbaijan/STS-Benchmark) ## How to Use ```python from transformers import AutoTokenizer, AutoModel import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("LocalDoc/LaBSE-small-AZ") model = AutoModel.from_pretrained("LocalDoc/LaBSE-small-AZ") # Prepare texts texts = [ "Hello world", "Salam dünya" ] # Tokenize and generate embeddings encoded = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): embeddings = model(**encoded).pooler_output # Compute similarity similarity = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0) ```